АНОТАЦІЯ

Мілашюс В. Е. Синтез сплавів системи Li–{B, Al}–{C, Si, Ge, Sn}, їхній фазовий склад, структура фаз, воденьсорбційні та електрохімічні властивості.

Дисертація на здобуття наукового ступеня доктора філософії у галузі 10 – Природничі науки за спеціальністю 102 – Хімія. Львівський національний університет імені Івана Франка, Львів, 2023.

Основною метою дослідження є оптимізація методу синтезу сплавів систем на основі літію; вивчення взаємодії літію з *p*-елементами III (B, Al) та IV (C, Si, Ge, Sn) груп; визначення кристалічної структури сполук; обчислення електронної структури окремих сполук; вивчення електрохімічних та воденьсорбційних властивостей окремих фаз. Основним критерієм для вибору сполук для дослідження цих властивостей були їх структурні особливості, а саме наявність пустот в кристалічних гратках для можливості включення атомів літію або атомів гідрогену в структуру інтерметалідної матриці. Сплави для дослідження синтезували різними методами: твердофазний синтез, електродугове сплавляння, індукційне сплавляння в танталових контейнерах. В подальшому вивчення синтезованих сплавів проводили за допомогою комплексу сучасних методів, а саме: рентгенівського фазового аналізу; рентгеноструктурного аналізу для розшифровки та уточнення кристалічної структури як методом порошку, так і методом монокристалу; скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії, диференційної скануючої калориметрії. Для низки сплавів вивчені електрохімічні та воденьсорбційні властивості, розрахована електронна структура з аналізом функції електронної локалізації (ELF) і густини електронних станів (DOS). З аналізу заселеності орбітального Гамільтоніана (-iCOHP) оцінено міцність хімічного зв'язку між атомами в структурах досліджених інтерметалідів.

У дисертаційній роботі було вперше досліджено ізотермічний переріз діаграми стану для системи Li–B–C при температурі 500 °C та проведено порівняння з ізотермічним перерізом діаграми стану при 400 °C, який був вивчений нами раніше. Для трьох нових тернарних сполук та однієї уточненої – Li_{1-0,98}BC (CT ZrBeSi, СП *hP*6, ПГ *P*6₃/*mmc, a* = 2,74736(2) Å, *c* = 7,0573(3) Å) характерні області гомогенності, що зумовлені включенням-вилученням літію з гетерокарбонових шарів, а також взаємозаміщенням між атомами карбону та бору. Сполуки Li_{1-0,96}BC₃ (СП *hP*6-1, ПГ *P*-6*m*2, *a* = 2,5397(2) Å, *c* = 7,5969(3) Å), Li_{1-0,94}B₂C₂ (СП *hP*18-3, ПГ *P*6₃/*mmc, a* = 2,5899(4) Å, *c* = 22,674(3) Å), Li_{2-1,97}B_{1,97-2,03}C_{1,03-0,97} (СП *tP*10, ПГ *P*-4*m*2, *a* = 4,1373(3) – 4,1402(2) Å, *c* = 7,1045(14) – 7,1060(12) Å) є представниками нових структурних типів.

Вперше частково досліджено ізотермічний переріз діаграми стану для системи Li–Al–C при температурі 400 °C та встановлено існування п'яти нових тернарних сполук: Li_{0,67-0,39}Al_{0,33-0,61}C_{0,17-0,085} (CT NaCl, CП *cF*24, ПГ *Fm*-3*m*, a = 4,4541(5) Å); LiAl₃C_x (CT CaTiO₃, ПГ *Pm*-3*m*, a = 4,003(2) Å); LiAl_{C3} (CT CaTiO₃, ПГ *Pm*-3*m*, a = 4,003(2) Å); LiAl₂C i LiAl_{C2} – невідома, ймовірно сполуки мають сталий склад.

Досліджено ізотермічний переріз діаграми стану для системи Li–Al–B при температурі 400 °C та встановлено існування трьох нових тернарних сполук: LiAlB (CT BaLiSi, CП *hP*12, ПГ *P*-6*m*, a = 3,0703(2) Å, c = 3,2848(3) Å); Li_{1,27}Al_{2,73}B (CT F₄N, CП *cP*5, ПГ *Pm*-3*m*, a = 4,049(1) Å); LiAl₃B_x, x = 0,6 (CT CaTiO₃, ПГ *Pm*-3*m*, a = 4,042(1) Å), також підтверджено існування уже відомої сполуки LiAlB₁₄ (СТ власний, СП *oI*164, ПГ *Imma*, a = 5,846(1), b = 8,149(2), c = 10,355(4)Å).

У системі Li–Si–B синтезовано деякі сплави для дослідження можливості формування тернарних сполук. Виявлено сполуку складу Li₁₂Si₇B_{0,5}, що кристалізується в ромбічній сингонії (власний структурний тип, ПГ *Рпта*, CT *oP*156, a = 8,5660(1) Å, b = 19,7060(2) Å, c = 14,2990(2) Å, Z = 8).

В областях багатих бором та вуглецем була детально досліджена система В–С та побудована уточнена подвійна діаграма стану, в якій встановлено, що фаза В₂₅С розкладається за температури 1215 °С на В₄С та В, а ВС₃ (СТ власний, ПГ *P*-6*m*2, СП *hP*4, a = 2,4588(4), c = 6,770(2) Å) розкладається за температури 1235 °С на В₄С і С.

Внаслідок включення атомів літію в пустоту, яка є у формі зрізаного тетраедра (12-вершинний поліедр Лавеса) утворюється надструктура складу LiB₂₅ (СТ власний, ПГ $P4_12_12$, a = 10,1880(7) Å, c = 14,469(1) Å), яку було досліджено методом монокристалу. В сполуці LiB₂₅ оборотна кількість літію становить – 0,012 Li/ф.o.

Електрохімічне делітування проведено для бінарних сполук системи Li–Al. Зразок Li₅₀Al₅₀ містив бінарну фазу LiAl, зразок Li₆₀Al₄₀ – фазу Li₃Al₂, зразок Li₆₉Al₃₁ – двофазний (фази: Li₉Al₄, Li₃Al₂). Максимальне зменшення об'єму комірки простежувалось для електрода на основі фази LiAl (–2,09 %) за деінтеркаляції 0,16 Li/ф.o. Зі збільшенням вмісту літію в електроді (для складів Li₆₀Al₄₀ i Li₆₉Al₃₁) зростає час розряду та його кількість під час розряд, а для бінарного інтерметаліду Li₃Al₂ зменшення об'єму становить –1,83 %, кількість мобільного літію для сплаву Li₆₀Al₄₀ становить 0,52 Li/ф.o. Електрод на основі Li₆₉Al₃₁ показав велике значення мобільності літію і вищий потенціал делітування (1,7–0,6 B), для якого значення електрохімічно активного літію сягає 1,6 Li/ф.o. (12,5 ат. % Li).

Для низки сплавів легованих бором були вивчені електрохімічні властивості: Li₅₀Al₄₅B₅ (максимальне зменшення об'єму комірки для електрода на основі фази LiAl –1,35 %, а кількість інтеркальованого літію 0,18 Li/ф.o), Li₆₀Al₃₅B₅ (максимальне зменшення об'єму комірки для електрода на основі фази Li₃Al₂ –0,65 %, а кількість інтеркальованого літію 0,61 Li/ф.o), Li₆₉Al₂₆B₅ (зразок продемонстрував найкращий результат значення електрохімічно активного літію 1,8 Li/ф.o. (13,8 ат. % Li) для електрода на основі фази Li₉Al₄ та Li₃Al₂).

Для вивчення електрохімічного делітування були синтезовані LiAl₃C_x (CT CaTiO₃, надструктура до AuCu₃), Si- та Ge-стабілізовані фази з кристалічною структурою AuCu₃. Параметри елементарної комірки для досліджуваних фаз:

Si-вмісна фаза a = 4,006(3) Å, V = 64,3(1) Å³; Ge-вмісна фаза a = 4,015(2) Å, V = 64,72(9) Å³; фаза LiAl₃C_x a = 4,003(2) Å, V = 64,14(7) Å³.

Фаза Li₁₇Sn₄ легована бором в якості анодного матеріалу, продемонструвала кількість електрохімічно деінтеркальованого літію більше 3,2 Li/ф.o., а кількість деінтеркальованого літію у фазі на основі Li₁₇Sn₄ та вуглецевих нанотрубок становить 3,8 Li/ф.o.

Воденьсорбційні властивості були досліджені для сплаву складу Li₂AlB. Під час цього процесу утворюється Li₂AlBH₈, що складається з LiAlH₄ та LiBH₄ (десорбція водню: LiAlH₄ при температурі вище 400 °C складає 2,6 ваг.%., LiBH₄ в температурному режимі між 400 °C-500 °C – 13,8 ваг.%).

Інтерпретацію хімічного зв'язку проведено за допомогою результатів розрахунку електронної структури для шести сполук: Li₉Al₄, LiAl₃B, ряду тернарних сполук в системі Li–B–C (Li_{2-1,97}B_{1,97-2,03}C_{1,03-0,97}, Li_{1-0,96}BC₃, Li_{1-0,98}BC), LiAl₃C.

Результати аналізу електронної структури бінарної сполуки Li₉Al₄ показують, що електронна густина найбільше сконцентрована навколо пари атомів Al–Al. Міцність зв'язування між ними оцінено із значень –iCOHP = 2,285 еВ. В той час як взаємодія між атомами Li–Al значно слабша, її міцність дорівнює –iCOHP = 0,435 еВ. Для Li₉Al₄ характерний металічний тип провідності, про що свідчить густина станів на рівні Фермі. У сполуці LiAl₃B найвища концентрація електронної локалізації спостерігаються на атомах бору. Це вказує на підвищену взаємодію (частка ковалентної взаємодії) між цими атомами та формування псевдо-аніону [Al₆B]^δ.

У сполуках Li_{1-0,96}BC₃ та Li_{2-1,97}B_{1,97-2,03}C_{1,03-0,97} атоми літію позитивно поляризовані внаслідок зміщення електронної густини до атомів бору та карбону. Максимальні значення функції електронної локалізації знаходяться між атомами бору та карбону. Хоча між атомами бору та карбону є наявна ковалентна взаємодія, але в загальному випадку для сполуки Li_{2-1,97}B_{1,97-2,03}C_{1,03-0,97} все таки є більша частка металічного тип провідності. Згідно квантово-хімічних розрахунків сполука Li_{1-0,98}BC є напівпровідником із шириною забороненої зони 1,92 *e*B, у

якому є міцний ковалентний тип провідності між атомами карбону та бору, що утворюють шари.

У сполуці LiAl₃C атоми карбону концентрують електронну густину, про що свідчить високе значення функції електронної локалізації ELF = 0,834, тоді як атоми Li демонструють частково позитивний заряд. Такий розподіл функції свідчить про наявність додаткової іонної взаємодії між атомами літію та p-елементів, однак переважаючою складовою хімічного зв'язку у цій фазі є металічний зв'язок.

Ключові слова: синтез, рентгенівський фазовий аналіз, монокристал, кристалічна структура, ізотермічний переріз, фазові рівноваги, електрохімічне літування, воденьсорбційні властивості, функція електронної локалізації, *p*-елементи, електронна мікроскопія, напівпровідники, заборонена зона.

SUMMARY

Viktoriia Milashius. Synthesis of alloys in the Li–{B, Al}–{C, Si, Ge, Sn} system, their phase composition, phase structure, hydrogen sorption and electrochemical properties.

Dissertation for the degree of Doctor of Philosophy in the field of 10 – Natural Sciences in specialty 102 – Chemistry. Ivan Franko National University of Lviv, Lviv, 2023.

The main objective of the research is the optimization of the synthesis method of lithium-based system alloys; studying the interaction of lithium with p-elements of group III (B, Al) and IV (C, Si, Ge, Sn); determination of the crystalline structure of compounds; calculation of the electronic structure of individual compounds; study of electrochemical and hydrogen sorption properties of individual phases. The main criteria for selecting compounds for the study of these properties were their structural features, specifically the presence of voids in the crystal lattice for the possibility of including lithium atoms or hydrogen atoms into the intermetallic matrix structure. Alloys for the synthesis study were produced using various methods: solid-phase synthesis, electric arc melting, induction melting in tantalum containers. Subsequent study of the synthesized alloys was conducted using a complex of modern methods, namely: X-ray phase analysis; X-ray structural analysis for deciphering and refining the crystalline structure by both powder method and single crystal method; scanning electron microscopy and energy-dispersive X-ray spectroscopy, differential scanning calorimetry. For several alloys, electrochemical and hydrogen sorption properties were studied, the electronic structure was calculated with an analysis of the electron localization function (ELF) and density of electronic states (DOS). From the population analysis of the orbital Hamiltonian (-iCOHP), the strength of the chemical bond between atoms in the structures of the studied intermetallics was assessed.

In the dissertation, the isothermal section of the state diagram for the Li–B–C system at 500 °C was investigated for the first time and compared with the isothermal

section of the state diagram at 400 °C, which we had previously studied. For three new ternary compounds and one refined – Li_{1-0.98}BC (Structural Type ZrBeSi, Pearson Symbol *hP*6, Space Group *P*6₃/*mmc*, *a* = 2.74736(2) Å, *c* = 7.0573(3) Å), characteristic homogeneity regions are observed, due to the inclusion/exclusion of lithium from heterocarbon layers, as well as mutual substitution between carbon and boron atoms. Compounds Li_{1-0.96}BC₃ (Pearson Symbol *hP*6-1, Space Group *P*-6*m*2, *a* = 2.5397(2) Å, *c* = 7.5969(3) Å), Li_{1-0.94}B₂C₂ (Pearson Symbol *hP*18-3, Space Group P6₃/mmc, *a* = 2.5899(4) Å, *c* = 22.674(3) Å), Li_{2-1.97}B_{1.97-2.03}C_{1.03-0.97} (Pearson Symbol *tP*10, Space Group *P*-4*m*2, *a* = 4.1373(3) – 4.1402(2) Å, *c* = 7.1045(14) – 7.1060(12) Å) represent new structural types.

For the first time, a partial isothermal section of the state diagram for the Li–Al– C system at 400 °C was investigated, and the existence of five new ternary compounds was established: Li_{0.67-0.39}Al_{0.33-0.61}C_{0.17-0.085} (Structural Type NaCl, Pearson Symbol *cF*24, Space Group *Fm*-3*m*, a = 4.4541(5) Å); LiAl₃C_x (Structural Type CaTiO₃, Space Group *Pm*-3*m*, a = 4.003(2) Å); LiAlC₃ (Structural Type CaTiO₃, Space Group *Pm*-3*m*, a = 4.050(1) Å), while the crystalline structures of compounds LiAl₂C and LiAlC₂ are unknown, presumably the compounds have a stable composition.

The isothermal section of the state diagram for the Li–Al–B system at 400 °C was explored, and the existence of three new ternary compounds was established: LiAlB (Structural Type BaLiSi, Pearson Symbol *hP*12, Space Group *P*-6*m*, *a* = 3.0703(2) Å, *c* = 3.2848(3) Å); Li_{1.27}Al_{2.73}B (Structural Type F₄N, Pearson Symbol *cP*5, Space Group *Pm*-3*m*, *a* = 4.049(1) Å); LiAl₃B_x, *x* = 0.6 (Structural Type CaTiO₃, Space Group *Pm*-3*m*, *a* = 4.042(1) Å), along with the confirmation of the compound LiAlB₁₄.

In the Li–Si–B system, some alloys were synthesized to explore the potential of forming ternary compounds. A compound of the composition $Li_{12}Si_7B_{0.5}$ was found, crystallizing in the orthorhombic system (unique structural type, Space Group *Pnma*, Pearson Symbol *oP*156, *a* = 8.5660(1) Å, *b* = 19.7060(2) Å, *c* = 14.2990(2) Å, *Z* = 8).

In the boron and carbon-rich areas, the B–C system was thoroughly studied, and a refined binary state diagram was constructed. It was established that the B₂₅C phase decomposes at a temperature of 1215 °C into B₄C and B, and BC₃ (Structural Type unique, Space Group *P*-6*m*2, Pearson Symbol *hP*4, a = 2.4588(4), c = 6.770(2) Å) decomposes at a temperature of 1235 °C into B₄C and C.

As a result of the inclusion of lithium atoms in the void, which is in the form of a truncated tetrahedron (12-vertex polyhedron of Laves), a superstructure of the composition LiB₂₅ (Structural Type unique, Space Group $P4_12_12$, a = 10.1880(7) Å, c = 14.469(1) Å) is formed, which was studied by the single crystal method. In the compound LiB₂₅, the reversible amount of lithium is 0.012 Li/f.u.

Electrochemical delithiation was conducted for binary compounds of the Li–Al system. The Li₅₀Al₅₀ sample contained a binary phase of LiAl, the Li₆₀Al₄₀ sample – the phase Li₃Al₂, the Li₆₉Al₃₁ sample – biphasic (phases: Li₉Al₄, Li₃Al₂). The maximum reduction in cell volume was observed for the electrode based on the LiAl phase (–2.09%) during deintercalation of 0.16 Li/f.u. With an increase in the lithium content in the electrode (for compositions Li₆₀Al₄₀ and Li₆₉Al₃₁), the discharge time and its quantity increase during discharge, and for the binary intermetallic Li₃Al₂, the volume reduction is –1.83%, the amount of mobile alloy Li₆₀Al₄₀ is 0.52 Li/f.u. The electrode based on Li₆₉Al₃₁ showed a large value of lithium mobility and a higher delithiation potential (1.7–0.6 V), for which the value of electrochemically active lithium reaches 1.6 Li/f.u. (12.5 at. % Li).

For a series of boron-alloyed compounds, electrochemical properties were studied: $Li_{50}Al_{45}B_5$ (maximum cell volume reduction for the electrode based on the LiAl phase -1.35%, and the amount of intercalated lithium is 0.18 Li/f.u.), $Li_{60}Al_{35}B_5$ (maximum cell volume reduction for the electrode based on the Li_3Al_2 phase -0.65%, and the amount of intercalated lithium is 0.61 Li/f.u.), $Li_{69}Al_{26}B_5$ (the sample showed the best result of electrochemically active lithium value 1.8 Li/f.u. (13.8 at. % Li) for the electrode based on the Li_9Al_4 phase).

For studying electrochemical delithiation, LiAl₃C_x (Structural Type CaTiO₃, superstructure to AuCu₃), Si- and Ge-stabilized phases with the crystalline structure of AuCu₃ were synthesized. Cell parameters for the studied phases: Si-containing phase a = 4.006(3) Å, V = 64.3(1) Å³; Ge-containing phase a = 4.015(2) Å, V = 64.72(9) Å³; phase LiAl₃Cx a = 4.003(2) Å, V = 64.14(7) Å³.

The phase $Li_{17}Sn_4$ alloyed with boron, as an anode material, demonstrated an amount of electrochemically deintercalated lithium of more than 3.2 Li/f.u, and the amount of deintercalated lithium in the phase based on $Li_{17}Sn_4$ and carbon nanotubes is 3.8 Li/f.u.

Hydrogen sorption properties were studied for the alloy composition Li₂AlB. During this process, Li₂AlBH₈ is formed, consisting of LiAlH₄ and LiBH₄ (hydrogen desorption: LiAlH₄ at temperatures above 400 °C constitutes 2.6 wt. %, LiBH₄ in the temperature range between 400 °C-500 °C – 13.8 wt. %).

The interpretation of the chemical bond was carried out using the results of the calculation of the electronic structure for six compounds: Li₉Al₄, LiAl₃B, a series of ternary compounds in the Li–B–C system (Li_{2-1.97}B_{1.97-2.03}C_{1.03-0.97}, Li_{1-0.96}BC₃, Li_{1-0.98}BC), LiAl₃C.

The results of the analysis of the electronic structure of the binary compound Li₉Al₄ show that the electronic density is most concentrated around the pair of Al-Al atoms. The strength of the bond between them is estimated from the values of -iCOHP = 2.285 eV. In contrast, the interaction between Li-Al atoms is significantly weaker, with a strength of -iCOHP = 0.435 eV. Li₉Al₄ exhibits a metallic type of conductivity, as indicated by the density of states at the Fermi level. As for the compound LiAl₃B, the highest indicators of electronic localization are observed on the boron atoms located at the center of octahedra with aluminum atoms. This suggests an enhanced interaction between these atoms and the formation of a pseudo-anion $[Al_6B]^{\delta}$. The strongest type of conduction is observed between aluminum and boron atoms.

In the compounds $Li_{1-0.96}BC_3$ and $Li_{2-1.97}B_{1.97-2.03}C_{1.03-0.97}$, lithium atoms are positively polarized due to the displacement of electronic density towards boron and carbon atoms. The maximum values of the electronic localization function are found between boron and carbon atoms. Although there is a covalent interaction between boron and carbon atoms, in general, for the compound $Li_{2-1.97}B_{1.97-2.03}C_{1.03-0.97}$, there is still a larger fraction of metallic type of conduction. The compound $Li_{1-0.98}BC$ is a semiconductor with a bandgap of 1.92 eV, where there is a strong covalent type of conduction carbon and boron atoms in the layers. In the compound LiAl₃C, carbon atoms attract electronic density towards themselves, as indicated by a high value of the electronic localization function ELF = 0.834, while Li atoms demonstrate positive polarization. Such a distribution of the function indicates the presence of additional ionic interaction between lithium and *p*-elements. However, the predominant component of the chemical bond in this phase is the metallic bond.

Keywords: synthesis, X-ray phase analysis, single crystal, crystal structure, isothermal section, phase equilibria, electrochemical lithiation, hydrogen sorption properties, electron localization function, *p*-elements, electron microscopy, semiconductors, band gap.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Наукові праці, в яких опубліковані основні наукові результати дисертації

Статті у наукових періодичних виданнях іноземних держав, що індексовані в міжнародних наукометричних базах даних (Scopus, Web of Science)

1. Pavlyuk, V., Milashys, V., Dmytriv, G., Ehrenberg, H. (2015). A new tetragonal structure type for Li₂B₂C. *Acta Cryst. C*, 71(1), 39-43. (Квартиль – Q3)

DOI: https://doi.org/10.1107/S2053229614025510

2. Milashius, V., Pavlyuk, V., Kluzia, K., Dmytriv, G., Ehrenberg, H. (2017). LiBC₃: a new borocarbide based on the grapheme and heterographene networks. *Acta Cryst. C*, 73, 984-989. (Квартиль – Q1)

DOI: <u>https://doi.org/10.1107/S2053229617015182</u>

3. Milashius, V., Pavlyuk, V., Dmytriv, G., Ehrenberg, H. (2018). Phase equilibria and crystal structure relationships in the ternary Li–B–C system. *Inorganic chemistry fronteirs*, 5, 853-863. (Квартиль – Q1)

DOI: https://doi.org/10.1039/C7QI00787F

Статті у наукових фахових виданнях України

1. Кордан, В., **Мілашюс, В.**, Тарасюк, І., Павлюк, В. (2021). Електрохімічне делітування бінарних LiAl, Li₃Al₂, Li₉Al₄ та легованих бором фаз. *Вісник Львівського університету. Серія хімічна*, 62, 77-87.

DOI: https://doi.org/10.30970/vch.6201.077

2. Кордан, В., **Мілашюс, В**., Тарасюк, І., Павлюк, В. (2023). Електронна структура сполуки LiAl₃B_x. Вплив бору на деінтеркаляцію літію. *Вісник Львівського університету. Серія хімічна*, 64, 64-72.

DOI: https://doi.org/10.30970/vch.6401.064

Наукові праці, які засвідчують апробацію матеріалів дисертації

1. Мілашюс, В., Дмитрів, Г., Тарасюк, І., Павлюк, В. (2013). *Структурні дослідження фаз системи Li–B–C*. Зб. наук. праць XIV Наук. конф. "Львівські хімічні читання – 2013", Львів, Н85.

2. Milashius, V., Pavlyuk, V., Dmytriv, G., Ehrenberg, H. (2017). *New hexagonal structure type of LiBC*₃. Зб. наук. праць XVI Наук. конф. "Львівські хімічні читання – 2017", Львів, Н20.

3. Milashius, V., Kordan, V., Pavlyuk, V., Dmytriv, G. (2018). *Electrochemical delithiation of LiAl and Li₃Al₂ phases*. Book Abs XXI Int. Sem. Phys. Chem. Solids, Częstochowa, 53.

4. Мілашюс, В., Кордан, В., Павлюк, В. (2018). Вплив бору на процес делітування фази Li₉Al_{4-x}B_x. Тези допов. XX Укр. конф. неорган. хімії, Дніпро, 176.

5. Мілашюс, В., Кордан, В., Тарасюк, І., Дмитрів, Г., Павлюк, В. (2019). *Електрохімічний синтез сполуки LiB*₂₅. Зб. наук. праць XVII Наук. конф. "Львівські хімічні читання – 2019", Львів, НЗ1.

6. Milashius, V., Kordan, V., Tarasiuk, I., Dmytriv, G., Pavlyuk, V. (2019). *Influence of boron on the electrochemical delithiation of the Li_xAl_y phases.* Coll. Abs. XIV Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, 142.

7. Milashius, V., Kordan, V., Gubay, A., Tarasiuk, I., Dmytriv, G., Pavlyuk, V. (2020). *Crystal and electronic structure of LiB_xAl₃*. Book Abstr. III Int. (XII Ukr.) Scientific Conference for Students and Young Scientists "Chemistry Current Problems", Vinnytsia, 55.

8. **Milashius, V.,** Kordan, V., Tarasiuk, I., Pavlyuk, V. (2023). *Synthesis and electronical delithation of Li*₁₇*Sn*₄ *doped by boron*. Book Abs. III Int. (XVI Ukr.) Scientific Conference for Students and Young Scientists "Chemistry Current Problems", Vinnytsia, 34.

9. Мілашюс, В., Кордан, В., Тарасюк, І., Дмитрів, Г., Павлюк, В. (2023).
Синтез та фазовий склад композиту Li₁₇Sn₄ на основі та вуглецевих нанотрубок.
36. наук. праць XIX Наук. конф. "Львівські хімічні читання – 2023", H30.

10. **Milashius**, V., Kordan, V., Pavlyuk, V. (2023). *A compositional and structural refinements for Li–B–C phases*. Coll. Abs. XV Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, P25.

11. **Milashius**, V., Kordan, V., Tarasiuk, I., Pavlyuk, V. (2023). *Electronic structure of* $LiAl_3C_x$ *compound and electrochemical delithiation of the related phases*. Coll. Abs. XV Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, P56.