Львівський національний університет імені Івана Франка Міністерства освіти і науки України

Кваліфікаційна наукова праця на правах рукопису

ЗІНЬКО ЛІАНА АНДРІЇВНА

УДК 546+548.736.4

ДИСЕРТАЦІЯ СИСТЕМИ Hf–Re–{Al, Si}: ФАЗОВІ РІВНОВАГИ, КРИСТАЛІЧНІ СТРУКТУРИ ТА ВЛАСТИВОСТІ ФАЗ

10 Природничі науки 102 Хімія

Подається на здобуття наукового ступеня доктора філософії. Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело.

_____Л. А. Зінько

Науковий керівник: Гладишевський Роман Євгенович, академік НАН України, доктор хімічних наук, професор

Львів – 2023

АНОТАЦІЯ

Зінько Л. А. Системи Hf-Re-{Al, Si}: фазові рівноваги, кристалічні структури та властивості фаз. – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 102 "Хімія" галузі знань 10 "Природничі науки". – Львівський національний університет імені Івана Франка, Львів, 2023.

Дисертаційна робота присвячена дослідженню взаємодії компонентів у потрійних системах Hf–Re–{Al, Si}, встановленню фазових рівноваг при 1000 °C, визначенню кристалічної структури тернарних сполук, які в них утворюються, та вимірюванню окремих хімічних і фізичних властивостей.

Проаналізовано літературні відомості про діаграми стану подвійних систем Hf-{Al, Si, Re} і Re-{Al, Si} та потрійних систем {Ti, Zr, Hf}- {Mn, Re}-{B, Al, Ga, In, C, Si, Ge, Sn, Pb}, споріднених із досліджуваними, а також про кристалічні структури сполук, що в них утворюються, та зроблено припущення щодо взаємодії компонентів у системах Hf-Re-Al i Hf-Re-Si.

Зразки для досліджень синтезували методом сплавляння шихти металів високої чистоти в електродуговій печі з подальшим гомогенізуючим відпалом при 1000 °C. Гафній, алюміній і кремній використовували у вигляді компактних металів, а порошок ренію пресували у вигляді таблеток. Фазовий аналіз і визначення параметрів структур виконували з використанням масивів рентгенівських дифракційних даних, одержаних на порошкових дифрактометрах ДРОН-2.0М (Fe Ка проміння) та STOE Stadi P (Cu Ка1 проміння). Хімічний склад зразків та окремих фаз визначали також за енергодисперсійної рентгенівської спектроскопії допомогою (скануючі електронні мікроскопи: PEMMA-102-02 з спектрометром ЕДАР і Tescan Vega 3 LMU з детектором Oxford Instruments SDD X-Max^N20). Мікротвердість фаз

2

визначали на твердомірі NOVOTEST TC-MKB методом Віккерса. Розрахунки електронної структури фаз здійснювали згідно з теорією функціонала густини (DFT). Температурні залежності коефіцієнта термо-е.р.с. вимірювали потенціометричним методом відносно міді, а значення електроопору – двозондовим методом. Електрохімічне гідрування сплавів виконували у хімічних джерел двохелектродних моделях електричної енергії типу "Swagelok-cell". Гідрогенсорбційні характеристики вимірювали впродовж 50 заряд-розрядних циклів.

На підставі результатів рентгенівського фазового, спектрального та мікроструктурного аналізів 44 зразків системи Hf-Re-Al при 1000 °C підтверджено існування 13 бінарних сполук і визначено існування нової тернарної сполуки Hf₅Re₂Al₂. Сполуки HfAl₃, Hf₂Al₃, HfAl, Hf₄Al₃, Hf₃Al₂ та Hf₂Al не розчиняють помітних кількостей ренію. Розчинність Hf у сполуках $Re_{14}Al_{5475}$, Re_4Al_{11} i Re_2Al є також незначною. У сполуці $Hf_{21}Re_{25}$ розчиняється приблизно 5 ат. % Al. Ізотермічний переріз діаграми стану системи Hf-Re-Al налічує 17 однофазних, 32 двофазних і 16 трифазних областей. Кристалічну сполуки $Hf_5Re_2Al_2$ структуру тернарної визначено рентгенівським порошку: уточнений дифракційним методом склад $Hf_5Re_{2,02(3)}Al_{1,98(3)}$ структурний тип Hf₅CuSn₃, просторова група $P6_3/mcm$, a = 8,0738(6), c = 5,7012(11) Å. У системі Hf–Re–Al також існують два обмежені тверді розчини HfRe_{2-0,88(1)}Al_{0-1,12(1)} і HfAl_{2-1,74(1)}Re_{0-0,26(1)} зі структурою типу MgZn₂ $(P6_3/mmc, a = 5,239-5,2443(2), c = 8,584-8,5281(4)$ Å i a = 5,250-5,2545(3),c = 8,680 - 8,5660(4) Å, відповідно).

Ізотермічний переріз діаграми стану системи Hf–Re–Si побудований у результаті дослідження 40 зразків методами рентгенівського фазового, спектрального та мікроструктурного аналізів. Він налічує 17 однофазних, 34 двофазних і 18 трифазних областей. Сполука Re₄Si₇ перебуває у рівновазі з найбільшою кількістю бінарних і тернарних сполук. Бінарні сполуки, окрім Hf₅Re₂₄ і HfRe₂, помітних кількостей третього компонента не розчиняють.

До 11 ат. % Si розчиняється у сполуці Hf₅Re₂₄ і до 16 ат. % Si – у HfRe₂. При 1000 °C у цій системі рентгенівським дифракційним методом порошку підтверджено існування і уточнено кристалічну структуру сполук HfReSi₂ (ZrCrSi₂, *Pbam*, a = 9,1271(3), b = 10,0356(4), c = 8,0708(3) Å), HfReSi (ZrNiAl, *P*-62*m*, a = 6,9240(2), c = 3,3890(1) Å) і Hf_{10,26(3)}Re_{2,74(3)}Si (Hf₉Mo₄B, *P*6₃/*mmc*, a = 8,5835(12), c = 8,7135(13) Å).

Тернарні сполуки систем Hf–Re–Al і Hf–Re–Si кристалізуються у чотирьох структурних типах і мають шаруваті структури. Усі тернарні сполуки системи Hf–Re–Si належать до класу структур з тригонально-призматичною координацією атомів найменшого розміру (клас 10 згідно з класифікацією П.І. Крип'якевича). У структурі сполуки HfReSi₂ можна виділити призми, у вершинах яких знаходяться атоми Hf i Re (Hf₄Re₂ i Hf₂Re₄). У структурі сполуки HfReSi є два типи призм: одні утворені виключно атомами Hf, інші – атомами Re. Тільки атоми Hf утворюють тригональні призми у структурі сполуки Hf_{10,26}Re_{2,74}Si. Атоми Re, як правило, центрують ікосаедри, а атоми Hf – пентагональні призми з додатковими атомами.

Встановлено, що у досліджених системах при переході від Al до Si ускладнюється характер взаємодії компонентів. Твердість зразків систем Hf–Re–Al i Hf–Re–Si зростає зі збільшенням вмісту ренію в них. Сплави, що містять силіцій, мають більші значення мікротвердості, ніж сплави, що містять алюміній (для фази Hf₅Re₂Al₂ – 783 HV, для фази Hf₅Re₂₁Si₃ – 1675 HV).

Температурні залежності питомого електроопору і термо-е.р.с. фаз зі структурою типу $MgZn_2$ вказують на те, що вони є провідниками металічного типу. Це засвідчують також розрахунки функції розподілу електронної густини сполук $HfRe_2$ і $HfAl_2$ та змодельованої впорядкованої фази $Hf(Re_{0.5}Al_{0.5})_2$.

Електроди на основі сплавів Hf₃₀Re₁₀Al₆₀ та Hf₃₂Re₅₃Al₁₅ характеризуються питомою розрядною ємністю 62 і 59 мА·год/г і номінальною розрядною напругою 1,35 і 1,24 В, відповідно. Вищі значення розрядної

ємності, 68 мА·год/г, і номінальної розрядної напруги, 1,35 В, має прототип хімічного джерела електричної енергії з електродом на основі Hf₃₀Re₁₅Al₅₅.

Здійснене прогнозування зайнятості пустот атомами гідрогену у структурах фаз Лавеса (структурний тип MgZn₂) вказало на можливість включення атомів H в пустоти Hf₂ M_2 з центром в правильній системі точок 6h просторової групи P6₃/mmc.

Наукова новизна одержаних результатів. Вперше побудовано ізотермічні перерізи діаграм стану систем Hf–Re–Al і Hf–Re–Si при 1000 °C у повних концентраційних інтервалах і визначено кристалічні структури тернарних сполук. Встановлено існування нової сполуки Hf₅Re₂Al₂ зі структурою типу Hf₅CuSn₃. Визначено області протяжності для трьох твердих розчинів зі структурою типу MgZn₂. Виміряно значення мікротвердості фаз і встановлено, що вона зростає зі збільшенням вмісту ренію в них. Виконано розрахунки функції розподілу електронної густини сполук HfRe₂ і HfAl₂ та змодельованої впорядкованої фази Hf(Re_{0,5}Al_{0,5})₂, що вказують на металічний тип провідності у них. Визначено вплив природи *p*-елемента на характер температурних залежностей коефіцієнта термо-е.р.с. та електроопору фаз зі структурою типу MgZn₂. Показано, що електродні матеріали на основі зразків системи Hf–Re–Al піддаються оборотному електрохімічному гідруванню/дегідруванню.

Ключові слова: гафній, реній, алюміній, силіцій, рентгенівська дифракція, рентгенівська спектроскопія, фазові рівноваги, діаграма стану, кристалічна структура, електронна структура, мікротвердість, електрокінетичні властивості, гідрогенсорбційні властивості, електродні матеріали.

SUMMARY

Zinko L. A. Hf–Re–{Al, Si} systems: phase equilibria, crystal structures and properties of the phases. – Qualifying scientific work on manuscript rights.

Thesis for the scientific degree of Doctor of Philosophy in the specialty 102 Chemistry of the field of knowledge 10 Natural sciences. – Ivan Franko National University of Lviv, Lviv, 2023.

This dissertation is devoted to the study of the interaction of the components in the ternary systems Hf–Re–Al and Hf–Re–Si: establishment of the phase equilibria at 1000 °C, determination of crystal structures of ternary compounds, and measurement of selected chemical and physical properties.

Literature data on the phase diagrams of the boundary binary systems $Hf-{Al, Si, Re}$ and $Re-{Al, Si}$ and of related ternary systems, ${Ti, Zr, Hf}-{Mn, Re}-{B, Al, Ga, In C, Si, Ge, Sn, Pb}$, were analyzed, together with information on the crystal structures of compounds formed in these systems, and preliminary assumptions were made about the interaction of the components in the Hf-Re-Al and Hf-Re-Si systems.

Samples for the experiments were synthesized by fusing charges of highpurity metals in an electric arc furnace and then carrying out homogenizing annealing at 1000 °C. Hafnium, aluminum and silicon were used in the form of compact metals, and rhenium powder was pressed into tablets. Phase analysis and determination of structure parameters were performed on arrays of X-ray diffraction data obtained on powder diffractometers DRON-2.0M (Fe *K* α radiation) and STOE Stadi P (Cu *K* α ₁ radiation). The chemical composition of the samples and individual phases was also determined using energy-dispersive X-ray spectroscopy (REMMA-102-02 scanning electron microscope with an EDAR spectrometer and a Tescan Vega 3 LMU scanning electron microscope with an Oxford Instruments SDD X-Max^N20 detector). The microhardness of the phases was determined on a NOVOTEST TC-MKV hardness tester by the Vickers method. Calculations of the electronic structure were carried out according to the density functional theory (DFT). The temperature dependence of the coefficient of thermo- e.m.f. was measured by the potentiometric method relative to copper, and the electrical resistivity was measured by the two-probe method. Electrochemical hydrogenation was performed in two-electrode cells of the Swagelok type. Hydrogen sorption characteristics were measured during 50 charge-discharge cycles.

As a result of X-ray diffraction, spectral and microstructural analyses of 44 samples of the Hf–Re–Al system at 1000 °C, the existence of 13 binary compounds was confirmed and a new ternary compound, Hf₅Re₂Al₂, was discovered. The compounds HfAl₃, Hf₂Al₃, HfAl, Hf₄Al₃, Hf₃Al₂, and Hf₂Al do not dissolve appreciable amounts of rhenium. The solubility of Hf in the compounds Re₁₄Al_{54.75}, Re₄Al₁₁ and Re₂Al is also insignificant. Approximately 5 at.% Al dissolves in the compound Hf₂₁Re₂₅. The isothermal section of the phase diagram at 1000 °C has 17 single-phase, 32 two-phase, and 16 three-phase regions. The crystal structure of the ternary compound Hf₅Re₂Al₂ was determined by the powder X-ray diffraction method: refined composition Hf₅Re_{2.02(3)}Al_{1.98(3)}, structure type Hf₅CuSn₃, space group *P*6₃/*mcm*, *a* = 8.0738(6), *c* = 5.7012(11) Å. Two limited solid solutions, HfRe_{2-0.88(1)}Al_{0-1.12(1)} and HfAl_{2-1.74(1)}Re_{0-0.26(1)} with structures of the MgZn₂ type (*P*6₃/*mmc*, *a* = 5.239–5.2443(2), *c* = 8.584–8.5281(4) Å and *a* = 5.250–5.2545(3), *c* = 8.680–8.5660(4) Å, respectively), were also observed at 1000 °C.

The isothermal section of the phase diagram of the Hf–Re–Si system at 1000 °C was constructed based on the study of 40 samples by X-ray diffraction, spectroscopy and microstructural analysis. It has 17 single-phase, 34 two-phase, and 18 three-phase regions. The compound Re_4Si_7 has the most equilibria. The binary compounds, except Hf_5Re_{24} and $HfRe_2$, do not dissolve significant amounts of the third component. Up to 11 at.% Si dissolves in the compound Hf_5Re_{24} and up to 16 at.% Si in $HfRe_2$. The existence of the previously known ternary compounds was confirmed by X-ray powder diffraction and the crystal structures of the compounds HfReSi₂ (ZrCrSi₂, *Pbam*, a = 9.1271(3), b = 10.0356(4), c = 8.0708(3) Å), HfReSi (ZrNiAl, *P*-62*m*, a = 6.9240(2), c = 3.3890(1) Å) and Hf_{10.26(3)}Re_{2.74(3)}Si (Hf₉Mo₄B, *P*6₃/*mmc*, a = 8.5835(12), c = 8.7135(13) Å) were refined.

The ternary compounds of the Hf–Re–Al and Hf–Re–Si systems crystallize in four structure types and have layered structures. All the ternary compounds of the Hf–Re–Si system belong to the class of structures with trigonal-prismatic coordination of the smallest atoms (class 10 according to the classification by P.I. Krypyakevych). In the structure of the compound HfReSi₂ it is possible to distinguish prisms, at the vertices of which there are Hf and Re atoms (Hf₄Re₂ and Hf₂Re₄). There are two types of prism in the structure of the compound HfReSi: one is formed exclusively by Hf atoms, the other one by Re atoms. Only Hf atoms form trigonal prisms in the structure of the compound Hf_{10.26}Re_{2.74}Si. The Re atoms, as a rule, center icosahedrons, and the Hf atoms pentagonal prisms with additional atoms.

It was established that in the investigated systems, the nature of the interaction of the components becomes more complicated when going from Al to Si. The hardness of samples of the Hf–Re–Al and Hf–Re–Si systems increases with increasing rhenium content. Alloys containing silicon have higher values of microhardness than alloys containing aluminum (783 HV for the Hf₅Re₂Al₂ phase, 1675 HV for the Hf₅Re₂₁Si₃ phase).

The temperature dependencies of the specific electrical resistance and thermoe.m.f. of the phases with MgZn₂-type structures indicate that they are metallic-type conductors. This was also confirmed by calculations of the electron density distribution function for HfRe₂ and HfAl₂ and the simulated ordered phase Hf(Re_{0.5}Al_{0.5})₂.

Electrodes based on $Hf_{30}Re_{10}Al_{60}$ and $Hf_{32}Re_{53}Al_{15}$ alloys showed specific discharge capacities of 62 and 59 mA·h/g and nominal discharge voltage of 1.35 and 1.24 V, respectively. The prototype of an electrochemical cell with an electrode based on $Hf_{30}Re_{15}Al_{55}$ showed the highest value of discharge capacity, 68 mA·h/g (nominal discharge voltage 1.35 V).

A study of the occupation of voids by hydrogen atoms in the structures of Laves phases (structure type MgZn₂) indicated the possibility of inclusion of H atoms in Hf₂ M_2 voids centered in Wyckoff position 6*h* of the space group $P6_3/mmc$.

Scientific novelty of the obtained results. For the first time, complete isothermal sections of the phase diagrams of the Hf–Re–Al and Hf–Re–Si systems at 1000 °C were constructed and the crystal structures of all of the ternary compounds were determined. The existence of a new Hf₅Re₂Al₂ compound with a Hf₅CuSn₃-type structure was established. The homogeneity regions were determined for three solid solutions with MgZn₂-type structure. The microhardness of the phases was measured, and it was established that it increases with increasing rhenium content. Calculations of the electron density distribution function of the compounds HfRe₂ and HfAl₂ and the simulated ordered phase Hf(Re_{0.5}Al_{0.5})₂ were performed, indicating metallic type of conductivity. The effect of the nature of the *p*-element on the temperature dependencies of the thermo-e.m.f. coefficient and electrical resistivity of the phases with MgZn₂-type structures was analyzed. It was further shown that electrode materials based on samples of the Hf–Re–Al system undergo reversible electrochemical hydrogenation/dehydrogenation.

Keywords: hafnium, rhenium, aluminum, silicon, X-ray diffraction, X-ray spectroscopy, phase equilibria, phase diagram, crystal structure, electronic structure, microhardness, electrokinetic properties, hydrogen sorption properties, electrode materials.

Наукові праці, в яких опубліковані основні наукові результати дисертації:

- Zinko, L.; Matselko, O.; Kordan, V.; Nychyporuk, G.; Gladyshevskii, R. Interaction of the components in the system Hf–Re–Si. *Chem. Met. Alloys* 2019, *12* (3/4), 88–92. doi.org/10.30970/cma12.0398.
- Зінько, Л. Кристалічна структура та електрохімічне гідрування фаз HfRe_{2-x}Al_x. *Chem. Met. Alloys* 2021, *14* (3/4), 64–68. doi.org/10.30970/cma14.0428.
- Зінько, Л.; Ничипорук, Г.; Гладишевський, Р. Система Hf–Re–Si при 1000 °С. Питання хімії та хімічної технології 2023, 3 (3), 72–76. doi.org/10.32434/0321-4095-2023-148-3-72-76.
- Zinko, L.; Nychyporuk, G.; Matselko, O.; Gladyshevskii, R. Ternary system Hf–Re–Al at 1000 °C. *Phys. Chem. Solid State* 2023, *24* (2), 361–366. doi.org/10.15330/pcss.24.2.361-366.

Апробація основних результатів дослідження на конференціях, симпозіумах, семінарах тощо:

- Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. A new hexagonal phase in the Hf–Al–Re system. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 103.
- Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. Crystal structure of the Hf₅Re_{1.36}Al_{2.64} compound. Coll. Abstr. 22 International Conference on Solid Compounds of Transition Elements, Wroclaw, Poland, April 12–15, 2021; p. 139.
- Зінько, Л.; Мацелко, О.; Ничипорук, Г.; Гладишевський, Р. Взаємодія компонентів у системі Hf–Re–Al. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання – 2021", Львів, Україна, 31 травня – 2 червня 2021; с. H25.
- Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevskii, R. The Hf–Re–Si system. Coll. Abstr. 23 International Conference on Solid Compounds of Transition Elements, Bordeaux, France, June 14–17, 2022; p. 126.
- Зінько, Л.; Кордан, В.; Ничипорук, Г.;. Гладишевський, Р. Електрохімічне гідрування сплаву Hf_{0,64}Re_{0,29}Al_{0,07}. Зб. наук. праць XIX Наукова конференція "Львівські хімічні читання – 2023", Львів, Україна, 29–31 травня 2023; с. H22.
- 6. Л.; Г.; P. Зінько, Ничипорук, Горинь, A.; Гладишевський, Електротранспортні $HfRe_{0.4}Al_{1.6}$. властивості фази Матеріали III конференції "Актуальні проблеми Міжнародної наукової ximiï, матеріалознавства та екології", Луцьк, Україна, 1–3 червня 2023; с. 35.
- Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevkii, R. Crystal structure and electrochemical hydrogenation of the HfRe_{1.78}Si_{0.22} phase. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 46.

3MICT

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ	14
ВСТУП	15
1. ЛІТЕРАТУРНИЙ ОГЛЯД	20
1.1. Подвійні системи	20
1.1.1. Система Hf–Al	20
1.1.2. Система Hf-Re	22
1.1.3. Система Hf-Si	23
1.1.4. Система Re-Al	25
1.1.5. Система Re-Si	26
1.2. Потрійні системи	28
1.2.1 Системи {Ti, Zr, Hf}-{Mn, Re}-{B, Al, Ga, In}	28
1.2.2. Системи {Ti, Zr, Hf}-{Mn, Re}-{C, Si, Ge, Sn, Pb}	34
1.2.3. Кристалічні структури сполук у системах Hf–Re–{Al, Si}	39
1.3. Висновки з літературного огляду	40
2. МЕТОДИКА ЕКСПЕРИМЕНТУ	45
2.1. Синтез і термічна обробка сплавів	45
2.2. Рентгенівський дифракційний метод порошку	46
2.3. Мікроструктурний та енергодисперсійний рентгенівський	47
спектральний аналізи	
2.4. Вимірювання мікротвердості	48
2.5. Розрахунок електронної структури	48
2.6. Вимірювання електротранспортних властивостей	49
2.7. Електрохімічне гідрування	50
3. РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТУ	52
3.1. Фазові рівноваги у потрійних системах	52
3.1.1. Система Hf-Re-Al	52
3.1.2. Система Hf-Re-Si	57
3.2. Кристалічні структури тернарних фаз	62
3.2.1. Кристалічні структури сполук	62
3.2.2. Кристалічні структури твердих розчинів	82

3.3. Мікротвердість зразків										
3.4. Електронна структура фаз $HfRe_{2-x}Al_x$										
3.5. Електрокінетичні властивості фаз HfRe _{2-x} M_x (M = Al, Si)										
3.6. Електрохімічні властивості зразків										
3.6.1. Електрохімічне гідрування сплаву Hf ₆₄ Re ₂₉ Al ₇										
3.6.2. Електрохімічне гідрування твердих розчинів HfRe _{2-x} Al _x	100									
3.6.3. Електрохімічне гідрування фази HfRe _{1,78} Si _{0,22}	105									
4. ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ	109									
4.1. Порівняння систем Hf-Re-{Al, Si} між собою та зі	109									
спорідненими										
4.2. Взаємозв'язки між структурами сполук систем Hf-Re-{Al, Si}	112									
4.3. Особливості електрохімічного гідрування фаз Лавеса	119									
ВИСНОВКИ	123									
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	125									
ДОДАТОК А	136									
ДОДАТОК Б	138									
ДОДАТОК В	140									

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

ат. % – атомний відсоток;

ВТМ, ht - високотемпературна модифікація;

КЧ – координаційне число;

Літ. – література;

мас. % – масовий відсоток;

HTM, rt – низькотемпературна модифікація;

ПГ – просторова група;

ПСТ – правильна система точок;

РЗМ або *R* – рідкісноземельний метал;

СП – символ Пірсона;

СТ – структурний тип;

a, *b*, *c*, *α*, *β*, *γ* – параметри елементарної комірки;

*B*_{overall} – параметр зміщення атомів;

I-інтенсивність відбиття;

L – рідина;

M-p-елемент;

T-d-метал;

V-об'єм елементарної комірки;

Х, Ү, Z – координатні осі;

х, *у*, *z* – координати атомів;

Z – число формульних одиниць;

 δ – віддаль між атомами.

ВСТУП

Обґрунтування вибору теми дослідження та її актуальність. Галузі використання інтерметалідів і сплавів металів надзвичайно широкі через велику різноманітність їхніх фізичних і хімічних властивостей. Сполуки на основі 5*d*-елементів є перспективними у створенні нових високощільних металічних матеріалів з невеликим значенням коефіцієнта термічного розширення.

Металічний гафній застосовують для виготовлення стрижнів ядерних реакторів, що регулюють їхню потужність завдяки великій здатності до захоплення нейтронів. З гафнію виготовляють також нитки та катоди електронних трубок, оскільки він тугоплавкий і має здатність до високої електронної емісії. Сплави, що містять гафній, використовують для виготовлення турбореактивних двигунів, ракет і супутників.

Гафній використовують і як легуючу добавку до спеціальних сплавів. Він покращує механічні властивості, підвищує пластичність, твердість та корозійну стійкість сплавів. Добавки гафнію в межах від 0,05 до 10 % корисні при виготовленні жаростійких та електростійких сплавів. Порошок гафнію поглинає водень, кисень та азот. Таку здатність цього металу використовують для отримання глибокого вакууму, видалення газів зі сплавів тощо.

Реній, незважаючи на високу вартість, є одним із найзатребуваніших металів у світі. Його застосовують у жаротривких сплавах, ядерній медицині, вакуумній техніці, ювелірній справі тощо. Реній відіграє унікальну роль в каталітичних процесах, зокрема, при крекінгу нафти. Термопари, виготовлені зі сплаву ренію і вольфраму, здатні вимірювати температуру майже до 2500 °C. Основними властивостями цього металу є пластичність, тугоплавкість, міцність, стійкість до корозії та окиснення, добра зварюваність.

До порівняно недорогих, недефіцитних легуючих елементів належить алюміній. Низька щільність алюмінідів сприяє підвищенню питомих характеристик міцності та жароміцності. Порівняно з іншими матеріалами алюмініди мають високий опір до окиснення.

Жароміцні алюмініди та сплави на їхній основі зумовлюють значний інтерес для авіаційної та аерокосмічної техніки внаслідок високої стабільності. Використовують алюмініди та силіциди як захисні покриття під час гарячої деформації та термічної обробки хімічно активних металів. Інтерметаліди є перспективними конструкційними матеріалами. Наприклад, алюмініди титану і нікелю є конструкційними матеріалами, що успішно використовуються в авіаційній техніці завдяки їхній малій щільності, високій жаростійкості та жароміцності, добрим ливарним властивостям.

Надтверді сплави містять, зокрема, карбіди та силіциди *d*-елементів. Зцементовані *d*-металом, вони мають твердість, близьку до твердості алмазу (наприклад, титан карбосиліцид). Такі сплави мають надзвичайно високу температуру плавлення і під час нагрівання їхня твердість не знижується.

Дослідження фазових рівноваг і кристалічної структури фаз у потрійних системах Hf–Re–{Al, Si} дасть змогу з'ясувати особливості хімічної взаємодії компонентів цих систем, а також сприятиме прогнозу взаємодії в споріднених системах, утворення нових сполук з метою подальшої розробки функціональних матеріалів.

Зв'язок роботи з науковими програмами, планами, темами, грантами. Робота виконана на кафедрі неорганічної хімії Львівського національного університету імені Івана Франка у відповідності з науковотематичними програмами Міністерства освіти і науки України за темами: "Синтез і кристалохімія нових інтерметалідів подвійного призначення", номер державної реєстрації 0118U003609, "Синтез нових інтерметалічних сполук і кристалохімічний алгоритм створення високоефективних матеріалів", номер державної реєстрації 0121U109766. Здобувач виконувала експериментальні роботи, пов'язані i3 синтезом, мікроструктурним, рентгенофазовим, рентгеноспектральним i рентгеноструктурним аналізами, побудовою

16

ізотермічних перерізів діаграм стану, визначенням кристалічних структур фаз і вимірюванням хімічних і фізичних властивостей.

Мета і задачі дослідження. Мета роботи – встановлення характеру взаємодії компонентів у потрійних системах Hf–Re–{Al, Si}, побудова ізотермічних перерізів діаграм стану (1000 °C), визначення параметрів кристалічної структури та механічних, електротранспортних, електрохімічних властивостей тернарних фаз. Для досягнення мети необхідно було вирішити такі завдання: провести ґрунтовний аналіз літературних відомостей, синтезувати сплави, здійснити фазовий, структурний і кристалохімічний аналізи, виміряти хімічні та фізичні властивості, виявити закономірності утворення тернарних фаз та їхніх властивостей.

Об'єкт дослідження: взаємодія компонентів у потрійних системах Hf–Re–Al i Hf–Re–Si.

Предмет дослідження: фазові рівноваги в системах Hf-Re-{Al, Si} при 1000 °C, кристалічні структури і властивості тернарних сполук та твердих розчинів.

Методи синтезу та дослідження: i електродугове сплавляння гомогенізуючий відпал для виготовлення зразків; рентгенівський фазовий та мікроструктурний аналізи для встановлення фазових рівноваг у системах; рентгеноструктурний аналіз для визначення кристалічної структури сполук; локальний рентгеноспектральний аналіз для встановлення якісного і фаз; кількісного електрохімічне гідрування складу ДЛЯ визначення гідрогенсорбційних властивостей; визначення термо-е.р.с. і питомого електроопору; вимірювання мікротвердості.

Наукова новизна одержаних результатів. Вперше побудовано ізотермічні перерізи діаграм стану систем Hf–Re–{Al, Si} при 1000 °C у повних концентраційних інтервалах і визначено кристалічні структури сполук, що утворюються у цих системах. Встановлено області гомогенності протяжних твердих розчинів зі структурою типу MgZn₂ (HfRe_{2-0,88}Al_{0-1,12},

17

HfAl_{2-1,74}Re_{0-0,26}, HfRe_{2-1,5}Si_{0-0,5}). Встановлено існування при 1000 °С одного тернарного алюмініду (Hf₅Re₂Al₂) та трьох тернарних силіцидів (HfReSi₂, HfReSi, Hf_{10.26}Re_{2.74}Si). Виміряно мікротвердість зразків з різним вмістом компонентів і встановлено, що її значення зростає зі збільшенням вмісту ренію. Виконано розрахунки функції розподілу електронної густини для сполук HfRe₂ і HfAl₂ та гіпотетичної фази Hf(Re_{0.5}Al_{0.5})₂, що вказали на металічний тип провідності, і визначено вплив природи *p*-елемента (Al чи Si) на характер температурних залежностей коефіцієнта термо-е.р.с. та електроопору фаз зі структурою типу MgZn₂. Показано, що електродні матеріали на основі зразків системи Hf-Re-Al (Hf₆₄Re₂₉Al₇, Hf₃₂Re₅₃Al₁₅, Hf₃₀Re₁₅Al₅₅, Hf₃₀Re₁₀Al₆₀), а також $Hf_{33}Re_{57}Si_{10}$ піддаються сплаву циклічному електрохімічному гідруванню/дегідруванню.

Практичне значення одержаних результатів. Отримані експериментальні дані про характер взаємодії компонентів у системах Hf-Re-{Al, Si}, структури та властивості фаз, що утворюються в цих системах, важливими для неорганічного матеріалознавства. Результати € можна використати як довідниковий матеріал для прогнозування діаграм стану систем та структури нових інтерметалідів. Діаграми стану будуть внесені в базу даних ASM Allov Phase Diagram Database (CIIIA, Швейцарія, Японія). Кристалографічні параметри тернарних фаз поповнять базу даних Pearson's Crystal Data (США, Швейцарія).

Особистий внесок здобувача. Формулювання та обґрунтування мети та завдань досліджень проведено разом з науковим керівником акад. НАН України, проф. Гладишевським Р.Є. Пошук та аналіз літературних даних, експериментальні роботи з синтезу та термічної обробки зразків у системах Hf–Re–{Al, Si}, побудова ізотермічних перерізів діаграм стану, встановлення кристалічних структур сполук, дослідження мікроструктур та мікротвердості здійснено здобувачем самостійно. Мікроструктурні дослідження проведено разом з н.сп. Корданом В. М. і м.н.сп. Мацелко О. В. Частину досліджень кристалічних структур методом порошку проведено разом з пр.н.сп. Демченком П. Ю. і зав.лаб. Ничипорук Г. П. Вимірювання електрокінетичних властивостй виконано разом з ст.н.сп. Горинем А. М. Електрохімічне гідрування проведено разом з н.сп. Корданом В. М. Отримані результати та сформульовані висновки обговорено спільно з науковим керівником акад. НАН України, проф. Гладишевським Р. Є.

результатів Апробація дисертації. Основні результати були представлені на International Conference on Crystal Chemistry of Intermetallic Compounds (Lviv, 2019, 2023), Наукових конференціях "Львівські хімічні читання" (м. Львів, 2021, 2023), International Conference on Solid Compounds of Transition Elements (Wrocław, Poland, 2021; Bordeaux, France, 2022), Міжнародній науковій конференції "Актуальні проблеми хімії, екології" (м. матеріалознавства та Луцьк, 2023), Звітних наукових конференціях Львівського університету (м. Львів, 2020, 2021).

Публікації. За матеріалами дисертації опубліковано 4 статті у фахових виданнях, в т.ч. 2 в міжнародних виданнях, що входять до наукометричної бази даних Scopus, та тези 7 доповідей на конференціях, з них 5 міжнародних.

Структура та обсяг роботи. Дисертація складається з анотації українською та англійською мовами, вступу, 4 розділів, висновків, списку використаних у роботі літературних джерел і додатків. Дисертація викладена на 142 сторінках (з них 7 сторінок додатків), містить 44 таблиці та 71 рисунок (з них 4 рисунки у додатках). Список використаних літературних джерел налічує 118 назв.

1. ЛІТЕРАТУРНИЙ ОГЛЯД

У цьому розділі наведено відомості з довідників (електронних баз даних) [1, 2] та оригінальних праць про взаємодію компонентів у подвійних, що обмежують досліджувані нами потрійні, та споріднених потрійних системах – діаграми стану і кристалічні структури сполук [3–83].

1.1. Подвійні системи

1.1.1. Система Нf–Al

На рис. 1.1 наведено діаграму стану системи Hf–Al, а в табл. 1.1 – кристалографічні характеристики сполук.

Згідно з діаграмою стану у системі Hf–Al [1, 3] утворюється сім бінарних сполук. Сполука HfAl₃ існує у двох модифікаціях – α і β [2]. Фазовий перехід α HfAl₃ $\leftrightarrow \beta$ HfAl₃ відбувається за температури 650 °C. Безпосередньо з розплаву утворюються чотири сполуки: β HfAl₃ при ~1590 °C, HfAl₂ при 1650 °C, HfAl при 1800 °C та Hf₃Al₂ при 1590 °C. Сполука Hf₂Al₃ утворюється в результаті перитектичної реакції при 1640 °C. Сполуки Hf₂Al і Hf₄Al₃ утворюються в результаті перитектоїдної реакції при ~1150 °C і ~1430 °C, відповідно.

У системі відбуваються п'ять евтектичних перетворень: $L \leftrightarrow Al + \alpha HfAl_3$ при 662,2 °C і ~0,1 ат. % Hf, L $\leftrightarrow \beta HfAl_3 + HfAl_2$ при 1540 °C і 27,5 ат. % Hf, L \leftrightarrow HfAl₂ + Hf₂Al₃ при 1495 °C і 37,0 ат. % Hf, $L \leftrightarrow HfAl + Hf_3Al_2$ при 1550 °C і 55,5 ат. % Hf, L \leftrightarrow Hf₃Al₂ + β Hf при 1530 °C і 62,0 ат. % Hf та одне евтектоїдне – β Hf \leftrightarrow Hf₃Al₂ + α Hf при 1450 °C і 68,5 ат. % Hf. У літературі також є інформація про існування сполуки Hf₅Al₃ [6], яка на діаграмі стану системи Hf–Al не відображена.

Рис. 1.1. Діаграма стану системи Hf-Al [3].

Таблиця 1.1

TC		1 •	•					
K 1	ристалогі	namiu	н1 х Я1	DAKTE	пистики	сполук	системи	Ht_AL
T	pricitation	μαφιπ	III Au	Juni		CHOJIYK	CHCICMIN	111 111

Сполука	СТ	СП	СП ПГ		Параметри елементарної комірки, Å			
				a	b	С		
βHfAl ₃	TiAl ₃	tI8	I4/mmm	3,893	_	8,925	[3]	
αHfAl ₃	ZrAl ₃	<i>tI</i> 16	I4/mmm	3,989	—	17,155	[4]	
HfAl ₂	MgZn ₂	hP12	<i>P</i> 6 ₃ / <i>mmc</i>	5,250	—	8,680	[5]	
Hf ₂ Al ₃	Zr_2Al_3	oF40	Fdd2	9,512	13,800	5,522	[6]	
HfAl	TlI	<i>oS</i> 8	Стст	3,240	10,803	4,278	[6]	
Hf ₄ Al ₃	Zr_4Al_3	hP7	P6/mmm	5,334	—	5,429	[6]	
Hf ₃ Al ₂	Zr_3Al_2	<i>tP</i> 20	<i>P</i> 4 ₂ / <i>mnm</i>	7,515	—	6,901	[6]	
Hf ₅ Al ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,0494	_	5,6432	[6]	
Hf ₂ Al	CuAl ₂	<i>tI</i> 12	I4/mcm	6,776	_	5,372	[7]	

1.1.2. Система Hf–Re

Діаграму стану системи Hf–Re побудовано авторами [8, 9]. Проте, вони наводять суперечливі дані стосовно деяких температур та типів реакцій. На рис. 1.2 наведено узагальнену діаграму стану системи Hf–Re [1], а в табл. 1.2 – кристалографічні характеристики сполук.

У системі Hf–Re існує три бінарних сполуки. Згідно з [1] за перитектичними реакціями утворюються сполуки Hf₂₁Re₂₅ (при 2445 °C), яка характеризується незначною областю гомогенності, і Hf₅Re₂₄ (3086 °C), область гомогенності якої сягає 7 ат. % Re. Сполука змінного складу HfRe₂ плавиться конгруентно при температурі 3160 °C. За температури 1840 °C та вмісту ~23,0 ат. % Re відбувається евтектичне перетворення L \leftrightarrow (Hf)ht + Hf₂₁Re₂₅, а при 2930 °C та вмісті ~93,0 ат. % Re – L \leftrightarrow Hf₅Re₂₄ + (Re). При 1300 °C і 12,0 ат. % Re – евтектоїдне перетворення (Hf)ht \leftrightarrow (Hf)rt + Hf₂₁Re₂₅.

Рис. 1.2. Діаграма стану системи Hf-Re [8].

Поліморфне перетворення (Hf)ht \leftrightarrow (Hf)rt відбувається при 1743 °C. З літературних джерел відомо також про існування твердих розчинів $Hf_{0,99}Re_{0,01}$ rt, $Hf_{0,88}Re_{0,12}$ ht i $Hf_{0,01}Re_{0,99}$.

Таблиця 1.2

Сполука	СТ	СП	СП ПГ		Параметри елементарної комірки, Å				
				а	b	С			
$Hf_{0,99}Re_{0,01}$ rt	Mg	hP2	<i>P</i> 6 ₃ / <i>mmc</i>	3,20	_	5,08	[10]		
$Hf_{0,88}Re_{0,12}$ ht	W	cI2	Im-3m	3,50	_	_	[10]		
Hf ₂₁ Re ₂₅	$Zr_{21}Re_{25}$	hR276	<i>R</i> -3 <i>c</i>	25,773		8,760	[11]		
HfRe ₂	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,239	_	8,584	[12]		
Hf ₅ Re ₂₄	Ti ₅ Re ₂₄	<i>cI</i> 58	<i>I</i> -43 <i>m</i>	9,708	_	9,708	[8]		
Hf _{0,01} Re _{0,99}	Mg	hP2	P6 ₃ /mmc	2,7557	_	4,446	[13]		

Кристалографічні характеристики фаз системи Hf-Re

1.1.3. Система Hf–Si

Діаграму стану системи Hf–Si наведено на рис. 1.3, а кристалографічні характеристики сполук – у табл. 1.3.

Система Hf–Si характеризується існуванням шести бінарних сполук [14]. При температурі 2603 °C безпосередньо з розплаву утворюється сполука Hf₃Si₂, яка має сталий склад. Сполуки Hf₂Si, Hf₅Si₃, Hf₅Si₄, HfSi ht та HfSi₂ утворюються за перитектичними реакціями при 2227 °C, 2510 °C, 2453 °C, 2307 °C і 1573 °C, відповідно. Сполука Hf₅Si₃ існує в інтервалі температур 1718–2510 °C, а сполука HfSi має високотемпературну модифікацію в межах 1780–2307 °C.

У системі відбуваються два евтектичні перетворення:

L \leftrightarrow Hf ht + Hf₂Si при 2047 °C i 12,0 ат. % Si;

L \leftrightarrow HfSi₂ + Si при 1360 °C i 93,0 ат. % Si.

Кристалічна структура високотемпературної модифікації сполуки HfSi ht невідома.

Рис. 1.3. Діаграма стану системи Hf-Si [14].

Таблиця 1.3

Сполука	СТ	СП	ПГ	Параме	три елеме комірки, Å	нтарної А	Літ.
				a	D	С	
Hf ₂ Si	CuAl ₂	<i>tI</i> 12	I4/mcm	6,5510	—	5,1862	[15]
Hf ₅ Si ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,818	—	5,557	[16]
Hf ₃ Si ₂	U ₃ Si ₂	<i>tP</i> 10	P4/mbm	6,9864	—	3,6677	[15]
Hf ₅ Si ₄	Zr ₅ Si ₄	<i>tP</i> 36	P4 ₁ 2 ₁ 2	7,0806	—	12,906	[17]
HfSi	FeB-b	oP8	Pnma	6,8759	3,7751	5,2263	[18]
HfSi ₂	ZrSi ₂	oS12	Стст	3,6696	14,5375	3,6409	[15]

Кристалографічні характеристики сполук системи Hf-Si

1.1.4. Система Re–Al

Діаграму стану системи Re–Al наведено на рис. 1.4, а кристалографічні характеристики усіх відомих сполук – у табл. 1.4.

У системі Re–Al існує шість бінарних сполук [19]. За перитектичними реакціями утворюються: Re₂Al при 1950 °C, Re₄Al₁₁ при 1550 °C, Re₁₄Al_{54,75} при 1450 °C, ReAl₆ при 660 °C і ReAl₁₂ при 600 °C. Сполука ReAl rt утворюється в результаті перитектоїдної реакції при 1050 °C. Всі сполуки плавляться інконгруентно і мають сталий склад. У системі відбувається одне евтектичне перетворення: L \leftrightarrow Al + ReAl₁₂ при 600 °C і ~0,5 ат. % Re. Також відомо про існування та кристалічну структуру сполук Re₈Al_{32,07} rt [21], Re_{1,8}Al_{2,2} [23], Re_{0,6}Al_{0,4} [25] і Re₂₄Al₅ [27].

Рис. 1.4. Діаграма стану системи Re-Al [19].

			1	r				
			ΠГ	Параметри елементарної				
Сполука	СТ	СП			комірки, Å		Літ.	
				a b		С		
ReAl ₁₂	WAl ₁₂	<i>cI</i> 26	Im-3	7,528	_		[20]	
 		G2 0	0	7,500		0.020	1111111111111	
ReAl ₆	$MnAl_6$	0528	Стст	7,599	6,606	9,029	[26]	
D. Al	D - 41	D42	ת 1	5,1530	9,0782	13,727	[01]	
$Re_8AI_{32,07}$ rt	$Re_8AI_{32,07}$	aP43	<i>P</i> -1	$\alpha = 96,852^{\circ}$	$\beta = 95,521^{\circ}$	$\gamma = 92,392^{\circ}$	[21]	
Do Al	Re ₁₄ Al _{54,75}	"D71 D 1	5,159	9,106	23,755	[22]		
Ke ₁₄ AI _{54,75}		aP/1	<i>P</i> -1	$\alpha = 100,94^{\circ}$	$\beta = 90,30^{\circ}$	γ = 93,00°		
Po.A1	Mp Al.	aP15	D 1	5,1686	8,9829	5,1872	[26]	
	1 v111 47 x1 11	<i>ui</i> 13	1 -1	$\alpha = 90,541^{\circ}$	$\beta = 99,679^{\circ}$	γ = 105,159°	[20]	
ReioAlaa	$Re(Re_{0,4} \times$	tΡΔ	$P\Delta/mmm$	3 0785	_	5 9515	[23]	
KC 1,8 A 12,2	$\times Al_{0,6})_2Al$	11 4	1 +////////	5,0705	_	5,7515	[23]	
ReAl rt	CsCl	cP2	Pm-3m	2,880	—	—	[24]	
Re _{0,6} Al _{0,4}	Mn	<i>cI</i> 58	<i>I</i> -43 <i>m</i>	9,580	_		[25]	
Do Al	$C_{11}T_{r}$	+16	14/1001000	2 0.91		0.594	[26]	
KC ₂ AI		110	14/ <i>mm</i>	2,901	_	9,384	[20]	
Re ₂₄ Al ₅	Ti ₅ Re ₂₄	<i>cI</i> 58	<i>I</i> -43 <i>m</i>	9,580	_	_	[27]	
		1						

Кристалографічні характеристики фаз системи Re-Al

1.1.5. Система Re-Si

На рис. 1.5 наведено діаграму стану, а в табл. 1.5 – кристалографічні характеристики сполук системи Re–Si.

Систему Re–Si вивчали автори [28, 29]. Згідно з [28] три сполуки постійного складу характеризують цю систему. Безпосередньо з розплаву при 1905 °C і 1970 °C утворюються сполуки Re₂Si та ReSi_{1,75}, відповідно. Сполука ReSi ht утворюється при температурі 1845 °C за перитектичною реакцією.

У системі відбуваються три евтектичні перетворення:

L ↔ Re + Re₂Si при 1895 °C i 32,0 ат. % Si;

L \leftrightarrow Re₂Si + ReSi ht при 1805 °C i 46,0 ат. % Si;

L \leftrightarrow ReSi_{1,75} + Si при 1105 °C i 91,0 ат. % Si.

У літературі є відомості про утворення твердого розчину $Re_{0,9}Si_{0,1}$ [29] та сполук Re_4Si_7 [33], $ReSi_2$ [34] та Re_5Si_3 [28].

Рис. 1.5. Діаграма стану системи Re-Si [28].

Таблиця 1.5

TC		1 .	•						٦.
- K 1	ристапогі	กลสมาน	IH1 XA	naktei	листики	сполук	системи	Ke-N	51
1.	pricitation	pupi	IIII Mu	punte		CHONYR		ILV L	J 1

Сполука	СТ	СП	ПГ	Парам	етри елемент комірки, Å	гарної	Літ.
				а	b	С	
Re _{0,9} Si _{0,1}	Mg	hP2	P6 ₃ /mmc	2,757	_	4,439	[29]
Re ₂ Si	Re ₂ Si	mP24	$P2_{1}/c$	6,4444	9,6019 $\beta = 94,214^{\circ}$	5,3898	[30]
ReSi ht	FeSi	cP8	<i>P</i> 2 ₁ 3	4,7744	_	—	[31]
ReSi _{1,75}	ReSi _{1,75}	aP6	<i>P</i> 1	3,138 $\alpha = 89,90^{\circ}$	$3,120$ $\beta = 90^{\circ}$	7,670 $\gamma = 90^{\circ}$	[32]
Re ₄ Si ₇	Re ₄ Si ₇	<i>mS</i> 44	Ст	23,1671	$\beta = 92,881^{\circ}$	8,3018	[33]
ReSi ₂	MoSi ₂	tI6	I4/mmm	3,141	_	7,672	[34]
Re ₅ Si ₃	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	9,530	—	4,810	[28]

1.2. Потрійні системи

1.2.1. Системи {Ti, Zr, Hf}-{Mn, Re}-{B, Al, Ga, In}

Потрійні системи за участю *d*-елементів IV і VII груп з *p*-елементами III групи періодичної системи вивчали впродовж багатьох років. Ізотермічні перерізи діаграм стану побудовано для семи систем з манганом – Ti–Mn–{B, Al, Ga}, Zr–Mn–{B, Ga, In} та Hf–Mn–Ga, та для двох систем з ренієм – {Zr, Hf}–Re–B (рис. 1.6–1.9).

Ізотермічний переріз діаграми стану системи Ті–Мп–В при 800 °С [35] зображено на рис. 1.6, *а*. У цій системі тернарні сполуки не існують. Істотної розчинності третього компонента в бінарних сполуках не виявлено. Титан диборид TiB₂ перебуває у рівновазі з усіма бінарними фазами системи Mn–В та з фазою TiMn₂.

Ізотермічний переріз діаграми стану системи Zr–Mn–В побудовано при 900 °C [36] (рис. 1.6, б). Бінарні сполуки не розчиняють помітної кількості третього компонента. Цирконій диборид ZrB₂ перебуває у рівновазі з усіма іншими бінарними фазами. Існування тернарних сполук у цій системі не виявлено.

Систему Ti–Re–В вивчали автори [37]. Ізотермічного перерізу діаграми стану цієї системи не побудовано. Встановлено лише існування сполуки Ti₂ReB₂.

Ізотермічний переріз діаграми стану системи Zr–Re–В при 1500 °C побудовано в повному концентраційному інтервалі [38] і зображено на рис. 1.6, *в*. Розчинність третього компонента в бінарних сполуках незначна. Цирконій диборид ZrB₂ перебуває у рівновазі з усіма фазами систем Zr–Re та Re–B. Ця система характеризується відсутністю тернарних сполук при 1500 °C, однак є відомості про існування сполуки Zr₉Re₄B при 1200 °C [39].

Для потрійної системи Hf–Re–В побудовано ізотермічний переріз діаграми стану при 1500 °C [40] (рис. 1.6, *г*). Розчинність Hf у боридах Re₃B і Re₇B₃ менша, ніж 5 ат. %. Інші бінарні сполуки практично не розчиняють третього компонента. Гафній диборид HfB₂ перебуває у рівновазі з усіма фазами систем Hf–Re і Re–B. Тернарні сполуки у системі Hf–Re–B при 1500 °C не існують; однак, аналогічно як і у системі Zr–Re–B, є відомості про існування сполуки Hf₉Re₄B при 1200 °C [39].

Рис. 1.6. Ізотермічні перерізи діаграм стану систем: *a* – Ті–Мп–В при 800 °C [35], *б* – Zr–Mn–В при 900 °C [36], *в* – Zr–Re–В при 1500 °C [38], *г* – Hf–Re–В при 1500 °C [40].

Взаємодію компонентів у системі Ті–Мп–Аl вивчали автори [41–43]. Ізотермічний переріз діаграми стану системи Ті–Мп–Al при 1000 °C [41] зображено на рис. 1.7. Встановлено існування тернарної сполуки TiMn_{0,4}Al_{2,6}, що має структуру типу AuCu₃. Близько 30 ат. % Al розчиняється у фазі Лавеса Ti(Mn,Al)₂. Авторами [44, 45] встановлено існування та визначено кристалічну структуру ще двох тернарних сполук $Ti_{7,25}Mn_{7,25}Al_{14,5}$ та $TiMn_{0,75}Al_{1,25}$ зі структурами типів Mg₆Cu₁₆Si₇ та MgZn₂, відповідно.

Рис. 1.7. Ізотермічний переріз діаграми стану системи Ti–Mn–Al при 1000 °C (1 – TiMn_{0,4}Al_{2,6}) [41].

Ізотермічний переріз діаграми стану системи Ті–Мп–Ga побудовано при 500 °С [46] (рис. 1.8, *a*). У системі встановлено існування двох тернарних сполук. Сполука сталого складу ТіМп_{0,5}Ga_{2,5} має структуру типу AuCu₃. Сполука Ti_{2,75}Mn_{3,25}Ga₅ характеризується значною областю гомогенності, що простягається вздовж ізоконцентрати 45,5 ат. % Ga і містить від 3 до 32 ат. % Ті та має структуру типу Ti₆Sn₅. Найбільша кількість третього компонента розчиняється сполукою TiMn₂ – близько 33 ат. % Ga.

Ізотермічний переріз діаграми стану потрійної системи Zr–Mn–Ga при 500 °C побудовано в повному концентраційному інтервалі і зображено на рис. 1.8, *б* [46]. Встановлено утворення п'яти тернарних сполук. Найбільша кількість третього компонента розчиняється у сполуці ZrMn₂, близько 39 ат. % Ga. Інші бінарні сполуки розчиняють третій компонент у кількостях, менших за 1 ат. %.

На рис. 1.8, *в* зображено ізотермічний переріз діаграми стану потрійної системи Hf–Mn–Ga при 500 °C [47]. За температури дослідження виявлено існування трьох тернарних фаз. На основі бінарної сполуки HfMn₂ утворюється твердий розчин з областю гомогенності до 38 ат. % Ga. Невелику кількість третього компонента розчиняє сполука Hf₃Mn₂ (~3 ат. % Ga).

Рис. 1.8. Ізотермічні перерізи діаграм стану систем: *a* – Ті–Мп–Ga при 500 °C (1 – Ті_{2,75}Mn_{3,25}Ga₅; 2 – ТіМn_{0,5}Ga_{2,5}) [46], *б* – Zr–Mn–Ga при 500 °C (1 – Zr₆Mn_{10,5}Ga_{12,5}; 2 – Zr₃Mn₂Ga₄; 3 – Zr_{1,1}Mn_{0,6}Ga_{2,3}; 4 – Zr_{0,3}MnGa_{1,7}; 5 – ZrMn_{0,5}Ga_{2,5}) [46], *в* – Hf–Mn–Ga при 500 °C (1 – Hf₃Mn₂Ga₄; 2 – Hf₃Mn₂Ga₆; 3 – HfMnGa₂) [47].

Ізотермічний переріз діаграми стану системи Zr–Mn–In при 600 °C побудовано у повному концентраційному інтервалі [48] (рис. 1.9) і виявлено одну тернарну сполуку складу ZrMn_{0,7}In_{2,3} зі структурою типу AuCu₃ [49].

Системи {Ti, Zr, Hf}–{Mn, Re}–{B, Al, Ga, In} характеризуються або відсутністю, або існуванням незначної кількості тернарних сполук. Деякі з них досліджено лише на предмет утворення сполук окремих складів, ізоструктурних до відомих типів. Кристалографічні характеристики відомих тернарних фаз систем {Ti, Zr, Hf}–{Mn, Re}–{B, Al, Ga, In} наведено в табл. 1.6.

Кристалографічні характеристики тернарних фаз систем

{Ti, Zr, Hf}-{Mn, Re}-{B, Al, Ga, In}

				Параметри елементарної			
Сполука	СТ	СП	ΠΓ	I	комірки, Å	L L	Літ.
				а	b	С	
Ti ₂ ReB ₂	U_3Si_2	<i>tP</i> 10	P4/mbm	5,898	_	3,189	[37]
Zr ₉ Re ₄ B	Hf ₉ Mo ₄ B	<i>hP</i> 28	P6 ₃ /mmc	8,525	_	8,651	[39]
Hf ₉ Re ₄ B	Hf9M04B	hP28	P6 ₃ /mmc	8,456	_	8,524	[39]
TiMn _{0,4} Al _{2,6}	AuCu ₃	cP4	Pm-3m	3,955	_	_	[44]
Ti _{7,25} Mn _{7,25} Al _{14,5}	Mg ₆ Cu ₁₆ Si ₇	<i>cF</i> 116	Fm-3m	11,89	_	_	[44]
TiMn _{0,75} Al _{1,25}	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,0325	_	8,2119	[45]
ZrMn ₆ Al ₆	ThMn ₁₂	<i>tI</i> 26	I4/mmm	8,67	_	5,01	[50]
HfMnAl	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,16	_	8,422	[51]
TiMn _{0,5} Ga _{2,5}	AuCu ₃	cP4	Pm-3m	3,935	_	_	[46]
Ti _{2,75} Mn _{3,25} Ga ₅	Ti ₆ Sn ₅	hP22	P6 ₃ /mmc	8,51	_	5,22	[46]
ZrMn _{0,5} Ga _{2,5}	AuCu ₃	cP4	Pm-3m	4,067	_	_	[46]
Zr ₃ Mn ₂ Ga ₆	Hf ₃ Mn ₂ Ga ₆	oP22	Pmmn	8,764	5,434	7,766	[52]
Zr ₃ Mn ₂ Ga ₄	Zr ₃ V ₂ Ga ₄	oP72	Pnma	16,75	5,355	13,57	[53]
Zr ₆ Mn _{10,5} Ga _{12,5}	Th ₆ Mn ₂₃	<i>cF</i> 116	Fm-3m	12,22	_	_	[46]
ZrMn _{1,55} Ga _{0,45}	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,10	_	8,31	[46]
Hf ₃ Mn ₂ Ga ₆	Hf ₃ Mn ₂ Ga ₆	oP22	Pmmn	8,699	5,376	7,704	[52]
HfMnGa ₂	HfFeGa ₂	<i>oP</i> 48	Pnma	9,985	8,431	9,003	[54]
Hf ₃ Mn ₂ Ga ₄	Zr ₃ V ₂ Ga ₄	oP72	Pnma	16,66	5,306	13,47	[53]
HfMn _{1,4} Ga _{0,6}	MgZn ₂	<i>hP</i> 12	<i>P</i> 6 ₃ / <i>mmc</i>	5,06		8,25	[47]
ZrMn _{0,7} In _{2,3}	AuCu ₃	cP4	Pm-3m	4,3648		_	[49]

1.2.2. Системи {Ti, Zr, Hf}-{Mn, Re}-{C, Si, Ge, Sn, Pb}

Багато із потрійних систем за участю двох *d*- і одного *p*-елемента IV групи досі мало вивчені. Серед потрійних систем {Ti, Zr, Hf]–{Mn, Re}–{C, Si, Ge, Sn, Pb} найповніше вивченими є системи з титаном. Ізотермічні перерізи діаграм стану побудовано тільки для двох систем з ренієм – Zr–Re–C [55] і Hf–Re–C [56], а також для п'ятьох систем з манганом – Ti–Mn–Si [57], Ti–Mn–Ge [58], Zr–Mn–Si [59], Ti–Mn–Sn [60], Zr–Mn–Sn [61]. На рис.1.10–1.12 зображено ізотермічні перерізи діаграм стану перелічених вище систем. У табл. 1.7 наведено кристалографічні характеристики відомих тернарних фаз систем {Ti, Zr, Hf}–{Mn, Re}–{C, Si, Ge, Sn, Pb}.

На рис. 1.10, *а* зображено ізотермічний переріз діаграми стану потрійної системи Zr–Re–C при 1900 °C [55]. C, Re i Zr, а також бінарні сполуки ZrRe₂ i Zr₅Re₂₄ перебувають у рівновазі зі сполукою ZrC. Розчинність Re у сполуці ZrC незначна (~1,5 ат. %). Розчинність C i Zr у ренії – менше 1 ат. %. У цій системі не виявлено жодної тернарної сполуки.

Рис. 1.10. Ізотермічні перерізи діаграм стану систем: *a* − Zr−Re−C при 1900 °C [55], *б* − Hf−Re−C при 1500 °C (1 − HfRe₄C) [56].

Ізотермічний переріз діаграми стану системи Hf–Re–C при 1500 °C [56] зображено на рис. 1.10, б. Менше ніж 5 ат. % Re розчиняється у бінарній сполуці HfC. Карбон, реній, гафній і всі сполуки системи Hf–Re перебувають у рівновазі з бінарною сполукою HfC. Відомо про існування сполуки приблизного складу HfRe₄C, структуру якої не визначено.

Ізотермічний переріз діаграми стану потрійної системи Ti–Mn–Si при 1000 °C побудовано в концентраційному інтервалі до 40 ат. % Si і зображено на рис. 1.11, a [57]. В цій області в системі існують дві сполуки TiMnSi та Ti_{0,05}Mn_{0,79}Si_{0,14}.

У системі Ті–Мп–Ge за температур 700 °C, 800 °C та 900 °C існує тернарна сполука ТіМпGe [58]. Сполука ТіМпGe₂ є при 700 °C та 800 °C. Крім того, авторами встановлено розчинність третього компонента у деяких бінарних сполуках при 900 °C: Ge у сполуці ТіMn₂ (до 15 ат. % Ge) та Mn у сполуці Ті₆Ge₅ (до 50 ат. % Mn). Ізотермічний переріз діаграми стану потрійної системи Ті–Mn–Ge при 900 °C зображено на рис. 1.11, δ [58].

На рис. 1.11, *в* представлено ізотермічний переріз діаграми стану потрійної системи Zr–Mn–Si при 800 °C [59]. Авторами підтверджено існування сполуки ZrMnSi та встановлено існування сполук ZrMnSi₂, Zr₄Mn₄Si₇ і ZrMn_{0,5}Si_{0,95}. Сполука ZrMn₂ розчиняє до 13 ат. % Si. Інші сполуки практично не розчиняють третього компонента.

Ізотермічний переріз діаграми стану системи Ti–Mn–Sn побудовано при 500 °C [60] (рис. 1.12, *a*). За умов дослідження в системі існує одна тернарна сполука, $Ti_{0,5}Mn_{0,5}Sn_2$ (CT Mg₂Ni). Встановлено існування твердих розчинів на основі сполук Mn₃Sn, Ti_6Sn_5 і Ti_3Sn , протяжність яких сягає 20,5 ат. % Ti, 26,5 ат. % Mn і 7,6 ат. % Mn, відповідно.

Для потрійної системи Zr–Mn–Sn побудовано ізотермічний переріз діаграми стану при 500 °C [61] (рис. 1.12, б). У системі встановлено існування однієї тернарної сполуки, ZrMn₆Sn₆. Ця сполука має постійний склад і її структура належить до типу MgFe₆Ge₆. Розчинність третього компонента у бінарних фазах менше 1-2 ат. %, за винятком сполуки Zr₅Sn₃. На основі цієї сполуки утворюється твердий розчин, що простягається вздовж ізоконцентрати 62,5 ат. % Zr до 7 ат. % Mn.

Рис. 1.11. Ізотермічні перерізи діаграм стану систем: *a* – Ti–Mn–Si при 1000 °C (1 – TiMnSi, R – Ti_{0,05}Mn_{0,79}Si_{0,14}) [57], *б* – Ti–Mn–Ge при 900 °C (1 – TiMnGe) [58], *в* – Zr–Mn–Si при 800 °C (1 – ZrMnSi₂, 2 – ZrMn_{0,5}Si_{0,95}, 3 – Zr₄Mn₄Si₇, 4 – ZrMnSi) [59].

Рис. 1.12. Ізотермічні перерізи діаграм стану систем: *a* – Ti–Mn–Sn при 500 °C (1 – Ti_{0,5}Mn_{0,5}Sn₂) [60], *б* – Zr–Mn–Sn при 500 °C (1 – ZrMn₆Sn₆) [61].

Таблиця 1.7

Кристалографічні характеристики тернарних сполук систем {Ti, Zr, Hf}-{Mn, Re}-{C, Si, Ge, Sn, Pb}

Сполука	СТ	СП	ПГ	Параме	Літ.		
				а	b	С	
1	2	3	4	5	6	7	8
Ti _{0,05} Mn _{0,79} Si _{0,14}	$(Cr_{0,16}Mo_{0,38} \times Co_{0,46})$	hR159	<i>R</i> -3	10,87	_	19,23	[62]
Ti _{0,93} Mn _{1,56} Si _{0,44}	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	4,8303	—	7,8663	[63]
TiMnSi	Fe ₂ P	hP9	<i>P</i> -62 <i>m</i>	6,532	_	3,255	[64]
Ti ₂ Mn ₄ Si ₅	Nb ₂ Cr ₄ Si ₅	<i>oI</i> 44	Ibam	15,55	7,383	4,889	[65]
TiMnSi ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	8,703	9,541	7,765	[66]
Ti _{0,5} Mn _{0,5} Si ₂	CrSi ₂	hP9	<i>P</i> 6 ₂ 22	4,63	_	6,45	[67]
TiMnGe ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	9,877	8,959	7,948	[68]
TiMnGe	TiFeSi	<i>oI</i> 36	Ima2	7,2147	11,1494	6,4946	[69]
Ti ₅ MnSn ₃	CuHf ₅ Sn ₃	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,136	—	5,545	[70]

Закінчення таблиці 1.7

		2		-		-	
Ι	2	3	4	5	6	1	8
$Ti_{0,5}Mn_{0,5}Sn_2$	Mg ₂ Ni	<i>hP</i> 18	<i>P</i> 6 ₂ 22	5,5537	—	14,0326	[60]
$Zr_{0,7}Mn_2Si_{0,3}$	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,015	_	8,151	[71]
ZrMnSi	TiNiSi	oP12	Pnma	6,456	3,758	7,559	[72]
Zr ₃ Mn ₄ Si ₆	$\frac{Nb_3(Cr_{0,5}\times)}{\times Fe_{0,5})_2Fe_2Si_6}$	<i>tP</i> 104	$P4_2/mbc$	17,1325	_	5,1058	[73]
$Zr_4Mn_4Si_7$	$Zr_4Co_4Ge_7$	<i>tI</i> 60	I4/mmm	13,13	—	5,182	[74]
ZrMnSi ₂	ZrMnSi ₂	<i>oI</i> 48	Immm	17,324	7,8918	5,1666	[75]
ZrMnSi ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	9,872	9,015	7,863	[67]
ZrMnGe ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	10,185	9,277	8,050	[67]
ZrMn ₆ Ge ₆	MgFe ₆ Ge ₆	<i>hP</i> 13	P6/mmm	5,142		8,104	[76]
ZrMnGe	TiNiSi	oP12	Pnma	6,594	3,891	7,873	[72]
ZrMn ₆ Sn ₆	MgFe ₆ Ge ₆	<i>hP</i> 13	P6/mmm	5,455	_	8,981	[77]
Zr ₅ Mn _{0,56} Sn _{2,44}	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	8,444	_	5,780	[61]
HfMnSi	TiNiSi	oP12	Pnma	6,460	3,755	7,565	[72]
Hf ₄ Mn ₄ Si ₇	$Zr_4Co_4Ge_7$	<i>tI</i> 60	I4/mmm	13,05	_	5,123	[74]
HfMnSi ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	8,994	9,81	7,868	[75]
Hf ₃ Mn ₄ Si ₆	$\frac{Nb_3(Cr_{0,5}\times)}{\times Fe_{0,5})_2Fe_2Si_6}$	<i>tP</i> 104	$P4_2/mbc$	17,131	_	5,105	[73]
HfMn ₆ Ge ₆	MgFe ₆ Ge ₆	<i>hP</i> 13	P6/mmm	5,132	—	8,098	[77]
HfMnGe ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	9,213	10,129	8,039	[75]
HfMnGe	ZrNiAl	hP9	<i>P</i> -62 <i>m</i>	6,699	_	3,803	[78]
HfMn ₆ Sn ₆	MgFe ₆ Ge ₆	<i>hP</i> 13	P6/mmm	5,427	_	8,937	[79]
TiReSi	ZrNiAl	hP9	<i>P</i> -62 <i>m</i>	6,787	—	3,223	[78]
ZrReSi	ZrNiAl	hP9	<i>P</i> -62 <i>m</i>	6,885	—	3,457	[78]
ZrReSi ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	10,047	9,185	8,069	[68]
HfReSi	ZrNiAl	hP9	<i>P</i> -62 <i>m</i>	6,9343	_	3,3950	[80]
HfReSi ₂	ZrCrSi ₂	<i>oP</i> 48	Pbam	9,140	10,051	8,081	[81]
Hf ₉ Re ₄ Si	Hf ₉ Mo ₄ B	<i>hP</i> 28	P6 ₃ /mmc	8,5643	—	8,6377	[82]

1.2.3. Кристалічні структури сполук у системах Hf-Re-{Al, Si}

У літературі відсутні відомості про існування тернарних сполук у системі Hf–Re–Al. У системі Hf–Re–Si відомо про існування трьох сполук: HfReSi₂, HfReSi та Hf₉Re₄Si. Кристалічна структура сполуки HfReSi₂ належить до ромбічного типу ZrCrSi₂ [81] (ПГ *Pbam*, СП *оP*48, a = 9,140, b = 10,051, c = 8,081 Å), сполуки HfReSi – до гексагонального типу ZrNiAl [83] (ПГ *P*-62*m*, СП *hP*9, a = 6,9343, c = 3,3950 Å), а сполуки Hf₉Re₄Si – до гексагонального типу Hf₉Mo₄B [82] (ПГ *P*6₃/*mmc*, СП *hP*28, a = 8,5643, c = 8,6377 Å). Координати атомів у структурах сполук HfReSi₂ та HfReSi подано у табл. 1.8-1.9, відповідно. Авторами [82] для сполуки Hf₉Re₄Si повне визначення кристалічної структури не здійснено; в табл. 1.10 наведено координати атомів для прототипу Hf₉Mo₄B.

Таблиця 1.8

Атом	ПСТ	x	У	Z
Hf1	8 <i>i</i>	0,3258	0,0487	0,2475
Hf2	4g	0,3300	0,3218	0
Re1	8 <i>i</i>	0,0852	0,2610	0,2492
Re2	4 <i>e</i>	0	0	0,2453
Si1	8 <i>i</i>	0,3360	0,3140	0,3530
Si2	4h	0,0360	0,3870	1/2
Si3	4h	0,1320	0,0910	1/2
Si4	4g	0,0190	0,3930	0
Si5	4g	0,1190	0,0950	0

Координати атомів у структурі сполуки HfReSi₂ [81]

Таблиця 1.9

Атом	ПСТ	X	У	Ζ
Hf	3 <i>f</i>	0,5971	0	0
Re	3 <i>g</i>	0,2550	0	1/2
Si1	2 <i>d</i>	1/3	2/3	1/2
0,96Si + 0,04Re	1 <i>a</i>	0	0	0

Координати атомів у структурі сполуки HfReSi [80]

Таблиця 1.10

Координати атомів у структурі сполуки Hf₉Re₄Si [82]

Атом	ПСТ	x	У	Z
Hf1	12 <i>k</i>	0,2032	0,4064	0,0471
Hf2	6 <i>h</i>	0,5403	0,0806	1/4
Re1	6 <i>h</i>	0,8905	0,7810	1/4
Re2	2 <i>a</i>	0	0	0
Si	2 <i>c</i>	1/3	2/3	1/4

1.3. Висновки з літературного огляду

На підставі аналізу літературних відомостей про взаємодію компонентів у подвійних системах Hf–Re, Hf–{Al, Si} і Re–{Al, Si} та споріднених до досліджуваних нами потрійних систем, можна зробити певні узагальнення та припущення стосовно характеру взаємодії компонентів у системах Hf–Re–{Al, Si}.

Подвійні системи, які обмежують досліджені потрійні, можна охарактеризувати як системи з складним характером взаємодії компонентів і значною кількістю сполук (табл. 1.11). Бінарні сполуки утворюються безпосередньо з розплаву або за перитектичними реакціями (за окремими винятками). Сполуки систем {Hf, Re}-{Al, Si}, за винятком HfSi₂, мають точкові склади, тоді як усім трьом сполукам системи Hf–Re притаманні області гомогенності.

M T	Al	Si	Re
Hf	9	6	3
Re	6	6	

Кількість сполук, що утворюються у подвійних системах

Особливістю цих систем є значна відмінність в електронній структурі та розмірах атомів. У системах Hf–Al і Hf–Si є сполуки зі структурами типів Mn_5Si_3 і CuAl₂, тоді як бінарні сполуки ренію з алюмінієм та силіцієм кристалізуються у різних структурних типах.

У подвійних системах, що обмежують потрійну систему Hf–Re–Al, утворюються сполуки зі структурами типів MgZn₂ (Hf–Re i Hf–Al) та Ti₅Re₂₄ (Hf–Re i Re–Al). Тому ймовірним є утворення протяжних твердих розчинів заміщення або навіть неперервного ряду твердих розчинів у системі Hf–Re–Al вздовж ізоконцентрати 33,3 ат. % Hf (взаємозаміщення атомів Re та Al з близькими значеннями радіусів) зі структурою MgZn₂, тоді як утворення протяжних твердих розчинів або неперервного ряду твердих розчинів між сполуками Hf₅Re₂₄ та Re₂₄Al₅ вздовж ізоконцентрати 82,7 ат. % Re (взаємозаміщення атомів Hf та Al з суттєвою різницею в значеннях радіусів) є малоймовірним.

Серед споріднених потрійних систем ізотермічні перерізи діаграм стану побудовані лише для окремих із них. Переважна більшість споріднених систем вивчалась лише на предмет утворення сполук окремих складів (табл. 1.12, 1.13).

Кристалічна структура більшості тернарних фаз (12 з 20) систем {Ti, Zr, Hf}–{Mn, Re}–{B, Al, Ga, In} належить до бінарних типів (6 структурних типів: AuCu₃, Th₆Mn₂₃, MgZn₂, Ti₆Sn₅, U₃Si₂, ThMn₁₂), що свідчить про невпорядковане розташування двох сортів атомів з утворенням статистичних сумішей. У системах {Ti, Zr, Hf}–{Mn, Re}–{C, Si, Ge, Sn, Pb}

кристалічна структура тернарних фаз належить до 17 типів, 12 з яких є тернарними, тобто більшість сполук (29 з 35) характеризуються впорядкованим розміщенням усіх сортів атомів. Загалом у розглянутих потрійних системах {Ti, Zr, Hf}–{Mn, Re}–*p*-елемент III та IV груп реалізуються 16 тернарних типів, в структурах яких атомам меншого розміру притаманна ікосаедрична координація.

Таблиця 1.12

	$T^{\rm IV}$	Ti	Zr	Hf	$T^{\rm IV}$	
	T ^{VII}	11	21	111	M ^{III}	
					В	
		3 	1	1	Al	
	Mn	$\frac{1}{2}$	5Λ	4Λ	Ga	
			1 1		In	
		1		1Λ	В	
	D				Al	
	Re				Ga	
					In	
загал	пьна кількіс	ть — 1		лобудо	вано ізотерм	лічний
	сполук		Δ	перері	із діаграми с	стану
Dinos						

Потрійні системи {Ti, Zr, Hf}-{Mn, Re}-{B, Al, Ga, In}

- відомості відсутні

Таблиця 1.13

$T^{\rm VII}$	Ti	Zr	Hf	T ^{IV} M ^{IV}
-				C
	6 Δ	6	4	Si
Mn	2Δ	3	3	Ge
	2 Δ	2 Δ	1	Sn
				Pb
		0 Δ	0 Δ	С
	1	2	3	Si
Re				Ge
				Sn
				Pb
агальна кількіс	сть → 1		/ побудо	вано ізотермі
сполук		Δ	перері	з діаграми ст
іломості вілеут	ні			

Потрійні системи {Ti, Zr, Hf}-{Mn, Re}-{C, Si, Ge, Sn, Pb}

За результатами аналізу літературних відомостей про споріднені системи для систем Hf–Re–{Al, Si} можна спрогнозувати наступне:

- характер взаємодії компонентів та ізотермічні перерізи діаграм стану систем Hf–Re–Al та Hf–Re–Si будуть відрізнятись між собою;

- у системі з Al можна очікувати утворення протяжних твердих розчинів заміщення на основі бінарних фаз систем Hf–Re та Hf–Al та, на відміну від потрійної системи з Si;

- у системі з Si буде утворюватись більша кількість тернарних сполук, ніж у потрійній системі з Al.

Ми поставили за мету побудувати ізотермічні перерізи діаграм стану систем Hf–Re–{Al, Si} при 1000 °C, визначити області гомогенності та кристалічну структуру тернарних фаз і дослідити їхні механічні, електротранспортні та електрохімічні властивості. Це дасть змогу виявити особливості взаємодії компонентів у цих системах, а також утворення та кристалохімічні закономірності сполук, що сприятиме пошуку нових речовин для матеріалів.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

2.1. Синтез і термічна обробка сплавів

Фазові рівноваги у системах Hf–Re–{Al, Si} встановлювали дослідженням подвійних і потрійних сплавів. Для їхнього одержання використовували метали такої чистоти: гафній – 99,9 мас. % Hf; реній – 99,9 мас. % Re; алюміній – 99,999 мас. % Al; кремній – 99,999 мас. % Si.

Зразки масою до 1 г синтезували методом електродугового сплавляння шихти металів в електродуговій печі з мідним водоохолоджуваним подом і вольфрамовим електродом в атмосфері очищеного аргону під тиском 5-6·10⁴ Па. Реній використовували у вигляді порошку, який перед сплавлянням пресували у таблетки. Додаткове очищення аргону проводили попереднім сплавлянням гетера — пористого титану. З метою забезпечення кращої гомогенізації сплави переплавляли повторно. У разі, коли втрати під час сплавляння не перевищували 1 мас. %, склад сплавів приймали таким, що відповідає складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах за температури 1000 °C в електричній муфельній печі СНОЛ з автоматичним регулюванням температури ± 2 °C впродовж тижня, а тоді загартовували в холодній воді без розбивання ампул. Зразки, як литі, так і відпалені, стійкі до дії атмосферного середовища впродовж тривалого часу.

Зважаючи на високі температури плавлення ренію (3190 °C) та гафнію (2230 °C) і значно нижчі силіцію (1410 °C) та алюмінію (660 °C), синтез сплавів систем Hf–Re–{Al, Si} виявився досить складним. Різниця у температурах плавлення компонентів (див. рис. 1.1–1.5), а також висока густина ренію (21 г/см³) спричиняли незавершений перебіг твердофазних реакцій.

2.2. Рентгенівський дифракційний метод порошку

Основний метод дослідження – рентгенівський фазовий аналіз [84]. Він базується на використанні полікристалічного зразка та монохроматичного випромінювання. За допомогою рентгенівського дифракційного методу порошку можна визначити якісний та кількісний фазовий склад зразка і встановити кристалічну структуру індивідуальних фаз.

Порошкові рентгенограми отримували шляхом нанесення порошку зразка на поверхню кварцової кювети. Використовували залізне (Fe *K*a) проміння на дифрактометрі ДРОН-2.0М.

За положеннями відбиттів на дифрактограмах проводили фазовий аналіз зразків шляхом порівняння з теоретично розрахованими дифрактограмами простих речовин, бінарних і тернарних сполук з використанням програм Powder Cell [85] і STOE WinXPow [86].

Для визначення параметрів структур використовували масиви рентгенівських дифракційних даних, отриманих на дифрактометрі STOE Stadi P, застосовуючи модифіковану геометрію Гіньє (проміння Cu *K*α₁).

Дифрактограми, отримані у кроковому режимі зйомки, використовували для уточнення кристалічної структури сполук. Розрахунок теоретичних інтенсивностей, уточнення координат атомів, коефіцієнтів заповнення правильних систем точок та ізотропних параметрів зміщення атомів проводили за допомогою пакетів програм FullProf Suite [87] і WinCSD [88] за алгоритмом розрахунку Рітвельда.

Достовірність вибраної моделі оцінювали за значеннями факторів розбіжності *R*:

$$R_{\rm p} = \frac{\sum |y_{\rm oi} - y_{\rm ci}|}{\sum y_{\rm oi}} - профільний фактор розбіжності (2.1),$$

$$R_{wp} = \left\{ \frac{\sum w_{i} (y_{oi} - y_{ci})^{2}}{\sum w_{i} (y_{oi})^{2}} \right\}^{1/2} - 3важений профільний фактор розбіжності (2.2),$$

46

$$R_{\rm B} = \frac{\sum |I_{\rm o} - I_{\rm c}|}{\sum I_{\rm o}} - \text{бреггівський фактор розбіжності} \qquad (2.3),$$

де y_{oi} – спостережувана інтенсивність на *і* кроці;

*y*_{ci} – розрахована інтенсивність на *і* кроці;

*I*_о – спостережувана інтенсивність відбиття;

*I*_с – розрахована інтенсивність відбиття;

$$w_i = \frac{1}{y_i}.$$

2.3. Мікроструктурний та енергодисперсійний рентгенівський спектральний аналізи

Дослідження мікроструктури зразків і визначення хімічного складу індивідуальних фаз проводили на скануючих електронних мікроскопах Tescan Vega 3 LMU, оснащеному детектором Oxford Instruments SDD X-Max^N20, та PEMMA-102-02, оснащеному енергодисперсійним рентгенівським спектрометром ЕДАР.

Зразки заплавляли у кільця сплавом Вуда, після чого шліфували наждачним папером на шліфувально-полірувальному станку. Якість шліфів перевіряли візуально та за допомогою металмікроскопа NEOPHOT 30. Дрібні дефекти на поверхні усували поліруванням.

Характеристичне рентгенівське випромінювання елементів, які містяться у зразку, є складовою лінійчастого спектру рентгенівського випромінювання і лежить в основі енергодисперсійного рентгенівського спектрального аналізу. В результаті бомбардування зразка пучком електронів атоми елементів, які у ньому містяться, випромінюють рентгенівські промені та вторинні електрони. Оскільки кожен елемент періодичної системи має унікальне, характерне лише для нього рентгенівське випромінювання, то, провівши аналіз отриманого спектра, можна визначити наявність елементів у зразку та їхній вміст з точністю до 1 %.

2.4. Вимірювання мікротвердості

Мікротвердість фаз визначали на твердомірі NOVOTEST TC-MKB за методом Віккерса [89]. Цей метод використовує дуже малі навантаження та індентор Віккерса у вигляді алмазної чотиригранної піраміди з кутом при вершині 136°.

Основні характеристики приладу: навантаження від 0,09807 Н (10 г сила) до 9,807 Н (1000 г сила – HV^1); збільшення зображення: $100 \times -$ для спостереження та $400 \times -$ для вимірювання; точність вимірювання ±0,2 мкм; максимальна висота об'єкта дослідження – 70 мм. Під дією сили впродовж певного часу (10-30 секунд) вдавлювали алмазну піраміду у зразок, тоді вимірювали діагоналі відбитка і за формулою визначали твердість зерен зразка:

де *Р* – прикладене навантаження, Н;

d – середньоарифметичне значення довжини обох діагоналей відбитка, мм,
α – кут при вершині наконечника – алмазної піраміди.

2.5. Розрахунок електронної структури

Розрахунки електронної структури здійснювали згідно з теорією функціонала густини (DFT), використовуючи пакет програм Elkv8.5.10 [90] у наближенні повнопотенціального методу лінеаризованих приєднаних плоских

хвиль (FP-LAPW) з функцією обмінної кореляції в узагальненому наближенні градієнта (GGA) [91, 92].

Параметри елементарної комірки та координати атомів використовували для проведення остаточних розрахунків повної енергії. Моделі кристалічної структури для проміжних складів фаз були створені з використанням комбінаторного підходу за допомогою пакету надкомірок [93]. К-сітку розміром 10×10×10 брали за основу розрахунку густини електронних станів та інтегрування зони Бріллюена. Моделі кристалічної структури побудовано з використанням пакету програм VESTA [94].

2.6. Вимірювання електротранспортних властивостей

Для вимірювання питомого електроопору зразки готували у формі паралелепіпеда з розмірами $1 \times 1 \times 4$ мм³ електроіскровим різанням. Залежність питомого електроопору від температури визначали потенціометричним методом [95]. Зразок розміщали на ізольованій мідній платформі, до якої закріплювали електроди та підводили постійний струм. До зразка припаювали струмові та потенціальні контакти. За допомогою мікровольтметра фіксували спад напруги при двох протилежних напрямках струму. Прилад дає змогу вимірювати значення питомого електроопору в температурному інтервалі від 78 до 400 К. Вимірювання вище кімнатної температури проводили з використанням електричного нагрівника, а для дослідження за низьких температур зразок охолоджували парами зрідженого азоту. Температуру зразка визначали за допомогою мідь-константанової термопари [95].

Формула для визначення питомого електроопору:

$$\rho = \frac{(U_1 + U_2)}{2I} \cdot \frac{S}{l}, \text{ OM} \cdot \text{M}, \qquad (2.5),$$

де *l* – віддаль між потенціальними контактами, м;

- S площа поперечного перерізу зразка, м²;
- *I* струм, що протікає через зразок, А;

49

 U_1, U_2 – спад напруги на зразку, В.

Дослідження термоелектрорушійної сили зразків проводили відносно мідних електродів. Зразок закріплювали у зонді між двома мідними контактами, до яких приєднували калібровані мідь-константанові термопари. Для вимірювання термоелектрорушійної сили використовували мідні вітки цих термопар. Суміш води з льодом слугувала для підтримки температури 0 °C холодних спаїв термопар. Пари зрідженого азоту забезпечували дослідження за низьких температур, а завдяки нагріванню зонду зовнішньою електричною пічкою проводили вимірювання за температур, вищих за кімнатну.

Формула для розрахунку диференціальної термо-е.р.с.:

$$S = \frac{E}{\Delta T} = \frac{E}{T_1 - T_2}$$
, mkB/K, (2.6),

де T_1 і T_2 – температура обох країв зразка, К; E – термо-е.р.с., мкВ.

2.7. Електрохімічне гідрування

Корозійностійкі сплави, які мають здатність до електрохімічного гідрування, використовують як електродні матеріали. Механізм такого гідрування відмінний від газового. Стабільність в агресивному середовищі електроліту (6 М розчин КОН) та електрохімічна поведінка залежать від якісного складу зразка. На можливість включення атомів гідрогену у пустоти впливають структурні характеристики електродного матеріалу. У цьому відношенні найбільш цікавими є пустоти, утворені атомами перехідних металів. Такі пустоти мають більший об'єм і є ідеальними для включення атома малого розміру. З хімічної точки зору – під впливом електронних хмар *d*-елементів утворюються гідриди не як іонно-ковалентні сполуки, а як тверді розчини включення.

Для електрохімічного гідрування проведення використовували двохелектродні прототипи хімічних джерел електричної енергії "Swagelokcell". Нікель(II) гідроксид, Ni(OH)₂, виконував роль катодного матеріалу. Його суміш з порошком графіту (9:1 за масою) перетирали до гомогенності. Катодний і анодний простір змочували 6 М розчином калій гідроксиду, який використовували як електроліт. У прототипі хімічного джерела електричної енергії катодний матеріал поміщали, попередньо спресувавши у вигляді циліндра. Досліджуваний сплав, перетертий в порошок, змочений електролітом та спресований у таблетку виконував роль анода (за процесів розряду). Спресовану целюлозу застосовували як сепаратор, оскільки вона є стійкою до агресивної дії розчину електроліту. Густина струму у процесі заряджання та складала 1,0 мА/см². Проводили 50 циклів заряджаннярозряджання розряджання. Для ycix електрохімічних досліджень використовували двоканальний гальваностат MTech G410-2. Заряджені електродні матеріали змішували з індиферентним маслом та відразу знімали масив рентгенівських дифракційних даних.

3. РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТУ

3.1. Фазові рівноваги у потрійних системах

3.1.1. Система Hf-Re-Al

Взаємодію компонентів у потрійній системі Hf–Re–Al вивчали методами рентгенівського фазового аналізу та скануючої електронної мікроскопії з енергодисперсійною рентгенівською спектроскопією. З метою дослідження виготовили 44 подвійних і потрійних зразки, склади яких наведено на рис. 3.1.

Рис. 3.1. Склади сплавів системи Hf-Re-Al.

На підставі результатів рентгенівського фазового та спектрального аналізів зразків системи Hf–Re–Al, відпалених при 1000 °C, підтвердили

існування 13 із 20 відомих бінарних сполук. Одержані результати добре узгоджуються з відомостями про взаємодію компонентів та діаграмами стану подвійних систем Hf–Al, Hf–Re i Re–Al [1, 3, 8, 19].

За результатами рентгенівського дифракційного і локального рентгеноспектрального аналізів встановлено, що бінарні сполуки HfAl₃ rt, Hf₂Al₃, HfAl, Hf₄Al₃, Hf₃Al₂, Hf₂Al не розчиняють помітних кількостей третього компонента. Внаслідок розчинення 10 ат. % Re у сполуці HfAl₂ утворюється твердий розчин заміщення складу HfAl_{2-1,74}Re_{0-0,26}. Розчинність Hf у сполуках Re₁₄Al_{54,75}, Re₄Al₁₁ і Re₂Al є незначною. Протяжний твердий розчин заміщення складу HfRe_{2-0,88}Al_{0-1,12} формується в результаті розчинення 37 ат. % Al у бінарній сполуці HfRe₂. Приблизно 5 ат. % Al розчиняється у сполуці Hf2₁Re₂₅.

У табл. 3.1 наведено склади, а на рис. 3.2 зображено фотографії поверхонь окремих зразків. У табл. 3.2 узагальнено результати їхнього фазового аналізу. Фотографії поверхонь інших 12 зразків представлено на рис. А1, А2.

Таблиця 3.1

	Склад			Склад		
Зразок	вихідний	усереднений за результатами рентгеноспек- трального аналізу	Зразок	вихідний	усереднений за результатами рентгеноспек- трального аналізу	
8	$Hf_{20}Re_{40}Al_{40}$	$Hf_{22,1(6)}Re_{49,5(6)}Al_{28,4(9)}$	15	$Hf_{40}Re_{15}Al_{45}$	$Hf_{42,1(5)}Re_{10,6(5)}Al_{47,4(8)}$	
9	$Hf_{10}Re_{80}Al_{10}$	$Hf_{11,0(5)}Re_{86,2(5)}Al_{2,8(7)}$	19	$Hf_{50}Re_{30}Al_{20}$	$Hf_{53,3(8)}Re_{28,8(8)}Al_{17,9(9)}$	
10	$Hf_{20}Re_{65}Al_{15}$	$Hf_{25,9(7)}Re_{67,4(6)}Al_{6,7(9)}$	20	$Hf_{25}Re_{30}Al_{45}$	$Hf_{28,0(4)}Re_{33,7(4)}Al_{38,3(9)}$	
11	$Hf_{15}Re_{40}Al_{45}$	$Hf_{13,4(3)}Re_{40,5(2)}Al_{46,1(8)}$	22	$Hf_{75}Re_{10}Al_{15}$	$Hf_{73,4(7)}Re_{11,3(7)}Al_{15,3(6)}$	
14	$Hf_{25}Re_{10}Al_{65}$	$Hf_{22,2(2)}Re_{8,4(2)}Al_{69,4(8)}$				

Склади зразків, зображених на рис. 3.2

Рис. 3.2. Фотографії поверхонь шліфів окремих зразків системи Hf–Re–Al і склади визначених фаз.

Таблиця 3.2

D 1	• •		~ ~
		DODDOM OTHER TID DI	10 11
ЕСЗУПЬТАТИ ШАЗОВОГО		зоонажених на ни	10 7 7.
	anasis, spasnib,	soopanemin na pr	10. 2.2
<i>J</i> 1	J 1		

OK	A aaa		Параметри елементарної комірки, Å			
3pa3	Фаза	CII, III	а	b	С	
1	2	3	4	5	6	
Q	$\frac{\text{Hf}(\text{Re,Al})_2}{\text{Hf}_{31,6(2)}\text{Re}_{56,9(2)}\text{Al}_{11,5(3)}}$	hP12, P6 ₃ /mmc	5,2327(2)	_	8,5345(4)	
0	$\begin{array}{l} Re_{4}Al_{11} \\ Hf_{1,0(6)}Re_{26,9(5)}Al_{72,1(9)} \end{array}$					
9	$\begin{array}{l} Hf_{5}Re_{24} \\ Hf_{10(1)}Re_{88(1)}Al_{2(1)} \end{array}$	cI58, I-43m	9,6621(3)	Ι	_	
	$Hf_{9(6)}Re_{88(2)}Al_{3(1)}$					
10	$\frac{\text{Hf}(\text{Re},\text{Al})_2}{\text{Hf}_{32,5(9)}\text{Re}_{64,6(9)}\text{Al}_{2,9(8)}}$	hP12, P6 ₃ /mmc	5,2450(3)	_	8,5774(9)	
	$\frac{Hf_5Re_{24}}{Hf_{15,6(1)}Re_{76,5(1)}Al_{7,9(1)}}$	cI58, I-43m	9,7154(8)	_	_	
	$Hf_{6,9(2)}Re_{31,7(2)}Al_{61,4(4)}$					
	Hf(Re,Al) ₂ Hf _{29,2(3)} Re _{52,5(3)} Al _{18,3(6)}	hP12, P6 ₃ /mmc	5,2294(3)	_	8,5248(9)	
11	Hf ₅ Re ₂₄	cI58, I-43m	9,6694(9)	_	_	
	$\frac{\mathbf{Re}_{4}\mathbf{Al}_{11}}{\mathbf{Hf}} = \mathbf{P}_{2} = \mathbf{A}_{1}$	aP15, P-1	5,213(2)	5,132(2)	9,010(3)	
	$\Pi_{0,5(3)} \mathbf{K}_{26,6(5)} \mathbf{A}_{172,9(5)}$	<i>k</i> D1 2	$\alpha = 74,98(2)^{+}$	(p - 91, 28(3))	$(\gamma - 80, 52(5))^{-1}$	
	$Hf_{31,3(4)}Re_{11,0(8)}Al_{57,7(7)}$	$P6_3/mmc$	5,2573(3)	_	8,5710(7)	
14	$\begin{array}{l} \textbf{HfAl_{3} rt} \\ \textbf{Hf}_{23,8(4)} \textbf{Re}_{0,5(2)} \textbf{Al}_{75,7(5)} \end{array}$	<i>tI</i> 16, <i>I</i> 4/ <i>mmm</i>	3,9907(3)	_	17,164(2)	
	$\begin{array}{l} Re_{4}Al_{11} \\ Hf_{3,9(2)}Re_{23,2(4)}Al_{72,9(4)} \end{array}$					
	$\begin{array}{l} Hf(Re,Al)_{2} \\ Hf_{32,4(6)}Re_{25,6(5)}Al_{42(1)} \end{array}$	hP12, P6 ₃ /mmc	5,2592(4)	_	8,5540(1)	
15	$\frac{Hf_{4}Al_{3}}{Hf_{47,7(5)}Re_{3,4(6)}Al_{48,9(6)}}$	hP7, P6/mmm	5,3282(8)	_	5,435(2)	
	$\begin{array}{c} \textbf{HfAl} \\ \textbf{Hf}_{50,9(8)} \textbf{Re}_{2,0(6)} \textbf{Al}_{47,1(3)} \end{array}$	oS8, Cmcm	3,318(6)	11,16(2)	4,185(7)	

Закінчення таблиці 3.2

1	2	3	4	5	6
	$\frac{\text{Hf(Re,Al)}_2}{\text{Hf}_{30(4)}\text{Re}_{46(4)}\text{Al}_{24(8)}}$	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,2747(7)	_	8,603(2)
19	$\begin{array}{l} Hf_{5}Re_{2}Al_{2} \\ Hf_{57(1)}Re_{20(3)}Al_{23(3)} \end{array}$	<i>hP</i> 18, <i>P</i> 6 ₃ / <i>mcm</i>	8,091(2)	_	5,689(2)
	Hf	<i>hP</i> 2, <i>P</i> 6 ₃ / <i>mmc</i>	3,170(1)	—	5,038(3)
	$\frac{\text{Hf(Re,Al)}_2}{\text{Hf}_{32(1)}\text{Re}_{50(1)}\text{Al}_{18(2)}}$	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,2485(3)	_	8,5404(8)
20	Hf(Al,Re) ₂ Hf ₃₀₍₂₎ Re ₁₇₍₃₎ Al ₅₃₍₂₎				
	$\frac{Re_{4}Al_{11}}{Hf_{2(1)}Re_{25(4)}Al_{73(1)}}$				
22	$\frac{Hf}{Hf_{78(5)}Re_{10(4)}Al_{12(1)}}$	<i>hP</i> 2, <i>P</i> 6 ₃ / <i>mmc</i>	3,1599(3)	—	5,0208(9)
22	$\frac{Hf_5Re_2Al_2}{Hf_{60(2)}Re_{21(6)}Al_{19(5)}}$	<i>hP</i> 18, <i>P</i> 6 ₃ / <i>mcm</i>	8,076(1)	_	5,730(2)

За температури дослідження в області високого вмісту гафнію у зразках співвідношенням компонентів Hf:Re:Al 9:4:1 зi = згідно 3 даними рентгеноспектрального аналізу встановлено існування нової сполуки приблизного складу Hf₅Re₂Al₂, ізоструктурної до Ti₅Ga₄ (*hP*18, *P*6₃/*mcm*) [96] чи її тернарного варіанту Hf₅CuSn₃ [97].

Ізотермічний переріз діаграми стану системи Hf–Re–Al при 1000 °C, який зображено на рис. 3.3, налічує 17 однофазних, 32 двофазних і 16 трифазних областей [98, 99]. Найбільше рівноваг має фаза Hf(Re,Al)₂. Тернарна фаза Hf₅Re₂Al₂ перебуває в рівновазі з Hf₃Al₂, Hf₂Al, (Hf), Hf₂₁Re₂₅ і протяжним твердим розчином на основі HfRe₂.

Рис. 3.3. Ізотермічний переріз діаграми стану системи Hf–Re–Al при 1000 °C (1 – Hf₅Re₂Al₂).

3.1.2. Система Hf-Re-Si

Для вивчення взаємодії компонентів у системі Hf–Re–Si виготовлено два подвійних і 38 потрійних зразків. Їхні склади наведено на рис. 3.4. У табл. 3.3 наведено склади, а на рис. 3.5 зображено фотографії поверхонь окремих зразків. У табл. 3.4 узагальнено результати їхнього фазового аналізу. Фотографії поверхонь інших 12 зразків представлено на рис. Б1, Б2.

За умов дослідження нами підтверджено існування 11 бінарних сполук: Hf₅Re₂₄ (CT Ti₅Re₂₄), HfRe₂ (CT MgZn₂), Hf₂₁Re₂₅ (CT Zr₂₁Re₂₅), HfSi₂ (CT ZrSi₂), HfSi (CT FeB), Hf₅Si₄ (CT Zr₅Si₄), Hf₅Si₃ (CT Mn₅Si₃), Hf₂Si (CT CuAl₂), Re₄Si₇ (CT Re₄Si₇), ReSi (CT FeSi) і Re₂Si (CT Re₂Si). Ізотермічний переріз діаграми стану системи Hf–Re–Si (рис. 3.6) налічує 17 однофазних, 34 двофазних і 18 трифазних областей. Сполука Re₄Si₇ перебуває у рівновазі з найбільшою кількістю бінарних і тернарних сполук.

Рис. 3.4. Склад сплавів системи Hf-Re-Si.

Таблиця 3.3

	Склад			Склад		
Зразок	вихідний	усереднений за результатами рентгеноспек- трального аналізу	Зразок	вихідний	усереднений за результатами рентгеноспек- трального аналізу	
2	$Hf_{33}Re_{10}Si_{57}$	Hf _{21,9} Re _{9,8} Si _{68,3}	8	$Hf_{20}Re_{60}Si_{20}$	$Hf_{19,5}Re_{57,9}Si_{22,7}$	
3	$Hf_{57}Re_{10}Si_{33}$	$Hf_{51,1}Re_{10,4}Si_{38,5}$	9	$Hf_{10}Re_{57}Si_{33}$	$Hf_{10,0}Re_{54,8}Si_{35,2}$	
5	$Hf_{50}Re_{30}Si_{20}$	$Hf_{45,2}Re_{29,5}Si_{25,3}$	10	$Hf_{25}Re_{25}Si_{50}$	$Hf_{24,3}Re_{24,7}Si_{51,0}$	
6	$Hf_{33}Re_{47}Si_{20}$	$Hf_{32,9}Re_{41,1}Si_{26,0}$	12	Hf ₆₄ Re ₂₉ Si ₇	$Hf_{62,2}Re_{31,6}Si_{6,2}$	
7	$Hf_{33}Re_{57}Si_{10}$	Hf _{31,1} Re _{56,3} Si _{12,6}				

\mathbf{C}				25
Скпали	3DA3KIB	зооражених	на рис	1 7
Спаладн	spusnib,	soopunemm	na pno.	5.0

Рис. 3.5. Фотографії поверхонь шліфів окремих зразків системи Hf-Re-Si і склади визначених фаз.

Таблиця 3.4

D	1	•	•	~			2	~
Результати	MAZOBOLO	3H3 II 3V 3	naskir	SOODAY	сених на	nuc		2
1 OSYMDIAIM	φασοροιο	ullulliy J	puskib,	Joopun		pnc.	5.	

OK	Феел		Параметри елементарної комірки, Å			
3pa3	Фаза	CII, III	а	b	С	
1	2	3	4	5	6	
	$\frac{HfSi_2}{Hf_{23(2)}Re_{4(1)}Si_{73(1)}}$	oS12, Cmcm	3,6727(2)	14,5321(9)	3,6415(2)	
2	HfReSi ₂ Hf _{23,8(7)} Re _{16,8(4)} Si _{59,4(5)}	oP48, Pbam	9,117(4)	10,028(3)	8,063(3)	
	Re ₄ Si ₇	mS44 Cm	23,110(4)	3,1383(4)	8,294(1)	
	$Hf_{17,4(4)}Re_{12,5(2)}Si_{70,1(4)}$			$\beta = 92,79(2)^{\circ}$		
2	Hf ₅ Si ₃ Hf _{52,7(6)} Re _{1,4(1)} Si _{45,9(7)}	hP16, P6 ₃ /mcm	7,819(1)	_	5,476(1)	
5	Hf(Re,Si) ₂ Hf _{44,9(4)} Re _{19,4(7)} Si _{35,7(3)}	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,222(2)	_	8,513(6)	
_	Hf(Re,Si)₂ Hf _{35,3(2)} Re _{50,7(8)} Si _{13,9(1)}	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,226(1)	_	8,549(3)	
5	Hf ₂ Si Hf _{59,9(3)} Re _{4,3(7)} Si _{35,7(1)}	<i>tI</i> 12, <i>I</i> 4/ <i>mcm</i>	6,335(2)	_	5,202(3)	
	Hf(Re,Si) ₂ Hf _{31,2(6)} Re _{51,1(6)} Si _{17,7(1)}	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,1899(1)	_	8,5009(3)	
6	HfReSi Hf _{31,7(9)} Re _{28,8(7)} Si _{39,5(6)}	hP9, P-62m	6,9205(8)	_	3,4133(7)	
	HfSi Hf _{43,8(2)} Re _{11,2(5)} Si _{45,0(4)}	oP8, Pnma	9,902(4)	3,776(2)	5,272(3)	
7	Hf(Re,Si) ₂ Hf _{30,1(6)} Re _{61,5(2)} Si _{8,3(2)}	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,2238(6)	_	8,548(2)	
/	HfReSi Hf _{48,3(4)} Re _{23,6(2)} Si _{28,0(4)}	hP9, P-62m	6,9213(14)	_	3,4146(9)	
	Hf ₅ (Re,Si) ₂₄ Hf _{14,9(7)} Re _{73,5(4)} Si _{11,6(4)}	cI58, I-43m	9,597(1)	_	_	
0	Re ₄ Si ₇	mSAA Com	23,2(4)	3,126(3)	8,28(1)	
0	$Hf_{7(1)}Re_{30,7(9)}Si_{62,3(4)}$	<i>m</i> 344, C <i>m</i>		$\beta = 92,7(1)^{\circ}$	<u> </u>	
	Hf(Re,Si) ₂ Hf _{25,0(4)} Re ₄₅₍₂₎ Si ₃₀₍₂₎	<i>hP</i> 12, <i>P</i> 6 ₃ / <i>mmc</i>	5,145(1)	_	8,418(3)	

Закінчення таблиці 3.4

1	2	3	4	5	6	
	$Hf_{5}(Re,Si)_{24}$	cI58, I-43m	9,5135(8)	_	_	
9	ReSi	D0 D0 0				
	$Hf_{2,8(7)}Re_{48,0(1)}Si_{49,2(3)}$	$cP8, P2_13$	4,7765(4)	—	—	
	HfReSi	hP9, P-62m	6,921(2)	_	3,385(2)	
	$Hf_{29,1(3)}Re_{30,3(5)}Si_{40,6(8)}$, , , ,	
10	HfReSi ₂	oPA8 Pham	0 110(3)	10.027(3)	8 064(3)	
10	$Hf_{21,6(4)}Re_{21,8(4)}Si_{56,6(1)}$	01 40, 1 0um),11)(3)	10,027(3)	0,001(0)	
	Re ₄ Si ₇		23,2(4)	3,126(3)	8,28(1)	
	$Hf_{7(1)}Re_{30,7(9)}Si_{62,3(4)}$	<i>m</i> 544, C <i>m</i>	$\beta = 92,7(1)^{\circ}$			
	$Hf_{21}Re_{25}$	hR776 R 3c	25 676(0)		9 757(5)	
	$Hf_{43(3)}Re_{51(2)}Si_{6(1)}$	<i>n</i> K270, K-3C	23,070(9)		0,137(3)	
12	Hf ₂ Si	tI12 IA/mcm	6 516(6)	_	5 261(9)	
12	$Hf_{64(3)}Re_{3(1)}Si_{33(2)}$	<i>t112</i> , 17/mem	0,510(0)		3,201(9)	
	Hf _{9+x} Re _{4-x} Si	СП <i>hP</i> 8,	8 5836(13)		0 7120(14)	
	$Hf_{71(2)}Re_{18(3)}Si_{11(1)}$	ПГ <i>Р</i> 6 ₃ / <i>т</i> с	0,000(10)		0,7130(14)	

Бінарні сполуки, окрім Hf_5Re_{24} і $HfRe_2$, помітних кількостей третього компонента не розчиняють. До 11 ат. % Si розчиняється у сполуці Hf_5Re_{24} (a = 9,5135(8) Å) і до 16 ат. % Si – у $HfRe_2$ (a = 5,1899(1) Å, c = 8,5009(3) Å). Граничні межі розчинності третього компонента в бінарних сполуках визначено на підставі результатів локального рентгеноспектрального аналізу. У системі Hf–Re–Si підтверджено існування при 1000 °C тернарних сполук $HfReSi_2$ (CT ZrCrSi₂), HfReSi (CT ZrNiAl) і к-фази (CT Hf_9Mo_4B). Ізотермічний переріз діаграми стану потрійної системи Hf–Re–Si при 1000 °C зображено на рис. 3.6 [100–102].

Рис. 3.6. Ізотермічний переріз діаграми стану системи Hf–Re–Si при 1000 °C (1 – HfReSi₂, 2 – HfReSi, 3 – Hf_{10,26}Re_{2,74}Si).

3.2. Кристалічні структури тернарних фаз

3.2.1. Кристалічні структури сполук

У системі Hf–Re–Al за 1000 °C в області високого вмісту гафнію у зразку складу Hf₆₅Re₂₅Al₁₀ (рис. 3.7, рис. 3.8) встановлено існування нової тернарної сполуки Hf₅Re₂Al₂ [103], ізоструктурної до Hf₅CuSn₃ [97]. Параметри її кристалічної структури визначено рентгенівським дифракційним методом порошку на підставі уточнення методом Рітвельда з використанням пакету програми FullProf Suite [87]. Умови експерименту та результати уточнення кристалічної структури індивідуальних фаз наведено у табл. 3.5. Слід зазначити, що у подвійній системі Hf–Al автори [6] повідомляли про існування сполуки зі структурою типу Mn_5Si_3 , яка стабілізується атомами нітрогену. На діаграмі стану подвійної системи Hf–Al вона не відображена [3]. Ймовірно, атоми ренію також можуть стабілізувати структуру сполуки Hf₅Al₃ й одночасно заміщати частину атомів алюмінію.

Оскільки вміст нової сполуки становив близько третини від загального складу зразка, то ми додатково виготовили зразки в околі існування цієї сполуки (див. рис. 3.1). Проте, зразки складів $Hf_{55,5}Re_{22}Al_{22,5}$, $Hf_{55,5}Re_{18}Al_{26,5}$, $Hf_{55,5}Re_{14}Al_{30,5}$, $Hf_{55,5}Re_{11,1}Al_{33,4}$ виявилися багатофазними. Високі температури плавлення Hf (2230 °C) і Re (3180 °C) та низька Al (660,5 °C) [104] зумовлюють повільний процес дифузії і повільне протікання перитектичної реакції, що унеможливлює одержання якісних зразків за умов дослідження.

Рис. 3.7. Дифрактограма зразка складу Hf₆₅Re₂₅Al₁₀.

Деталі експерименту і кристалографічні характеристики фаз

Фаза	$Hf_5Re_2Al_2$	Hf	$Hf_{21}Re_{25}$			
Вміст, мас. %	31	36	33			
Структурний тип	Hf ₅ CuSn ₃	Mg	Zr ₂₁ Re ₂₅			
Символ Пірсона, кількість	hP18 7	hP2 2	LP276 6			
формульних одиниць Z	<i>nr</i> 10, <i>2</i>	nr 2, 2	mK270, 0			
Просторова група	<i>P</i> 6 ₃ / <i>mcm</i>	P6 ₃ /mmc	<i>R</i> -3 <i>c</i>			
Дифрактометр		STOE Stadi P				
Проміння, Å		1,54056 (Cu <i>K</i> α ₁)				
Межі 2 <i>θ</i> , ° 5,00–105,77						
Крок 2 <i>θ</i> , °, час знімання, с		0,015, 300				
Параметри елементарної комірки Å	<i>a</i> = 8,072(2)	a = 3,177(1)	a = 25,792(6)			
параметри слементарної комірки, А	c = 5,714(4)	c = 5,041(1)	c = 8,767(3)			
Об'єм елементарної комірки V , Å ³	322,42(30)	44,06(2)	5050,7(20)			
Густина, г/см ³	13,848 13,455 16,5					
Параметри профілю U; V; W	0,69(4); -0,06(1); 0,08(3)					
Фактори розбіжності $R_{\rm p}$; $R_{\rm wp}$	0,076; 0,107					
Фактор розбіжності <i>R</i> _В	0,0813	0,0863	0,137			

у зразку Hf₆₅Re₂₅Al₁₀

На рис. 3.9 і 3.10 зображені дифрактограми, а на рис. 3.11 – фотографії поверхонь шліфів зразків складів $Hf_{55,5}Re_{14}Al_{30,5}$ і $Hf_{55,5}Re_{22}Al_{22,5}$, відповідно. Деталі експерименту і кристалографічні характеристики фаз, виявлених у зразку $Hf_{55,5}Re_{14}Al_{30,5}$, узагальнено в табл. 3.6, а в зразку $Hf_{55,5}Re_{22}Al_{22,5} - в$ табл. 3.7. У табл. 3.8 подано координати атомів, а у табл. 3.9 – міжатомні віддалі і координаційні числа атомів у структурі сполуки $Hf_5Re_2Al_2$ (зразок $Hf_{55,5}Re_{22}Al_{22,5}$). Статистичне заповнення атомами Al і Re ПСТ 6*g* може свідчити про те, що ця сполука має незначну область гомогенності.

Рис. 3.8. Фотографія поверхні шліфа зразка складу $Hf_{65}Re_{25}Al_{10}$ (світла фаза – $Hf_{21}Re_{25}$; світло-сіра фаза – $Hf_5Re_2Al_2$).

Рис. 3.9. Дифрактограма зразка складу Hf_{55,5}Re₁₄Al_{30,5}.

Рис. 3.10. Дифрактограма зразка складу Hf_{55,5}Re₂₂Al_{22,5}.

Рис. 3.11. Фотографії поверхні шліфів зразків складу Hf_{55,5}Re₁₄Al_{30,5} (світла фаза – Hf₅Re₂Al₂; сіра фаза – Hf₃Al₂) (*a*) та Hf_{55,5}Re₂₂Al_{22,5} (світла фаза – Hf₅Re₂Al₂; світло-сіра фаза – Hf; темна фаза – Hf(Re,Al)₂) (*б*).

Деталі експерименту і кристалографічні характеристики фаз

Фаза	$Hf_5Re_2Al_2$	Hf ₃ Al ₂		
Вміст, мас. % *	57	38		
Структурний тип	Hf ₅ CuSn ₃	Zr ₃ Al ₂		
Символ Пірсона, кількість формульних одиниць <i>Z</i>	<i>hP</i> 18, 2	<i>tP</i> 20, 4		
Просторова група	P6 ₃ /mcm	P4 ₂ /mnm		
Дифрактометр	STOE Stadi P			
Проміння, Å	міння, Å 1,54056 (
Межі 2 <i>θ</i> , °	6,00–110,625			
Крок 2 <i>θ</i> , °, час знімання, с	0,015	5, 300		
Параметри елементарної комірки, Å	a = 8,0773(4) c = 5,7004(8)	a = 7,5356(4) c = 6,9050(5)		
Об'єм елементарної комірки V , Å ³	322,09(5)	392,10(4)		
Густина, г/см ³	13,668	9,978		
Параметри профілю U; V; W	0,16(1); 0,0; 0,01(1)			
Фактори розбіжності $R_{\rm p}; R_{\rm wp}$	0,115; 0,158			
Фактор розбіжності <i>R</i> _В	0,0848	0,160		

у зразку Hf_{55,5}Re₁₄Al_{30,5}

*Вміст фази Hf(Re,Al)₂ (СТ MgZn₂, ПГ *P*6₃/*mmc*, a = 5,2609(2), c = 8,5350(8) Å становить 3 мас. %. Вміст фази Hf (СТ Mg; ПГ *P*6₃/*mmc*, a = 3,1776(3), c = 5,0437(3) Å становить 2 мас. %.

Деталі експерименту і кристалографічні характеристики фаз

y spusky 111 _{55,5} 1xe ₂₂₇ 11 _{22,5}						
Фаза	$Hf_5Re_2Al_2$	Hf(Re,Al) ₂	Hf			
Вміст, мас. %	62,9	25,8	11,3			
Структурний тип	Hf ₅ CuSn ₃	MgZn ₂	Mg			
Символ Пірсона, кількість формульних одиниць <i>Z</i>	<i>hP</i> 18, 2	<i>hP</i> 12, 4	hP2, 2			
Просторова група	<i>P</i> 6 ₃ / <i>mcm</i>	P6 ₃ /mmc	P6 ₃ /mmc			
Дифрактометр		STOE Stadi P				
Проміння, Å	1,54056 (Cu <i>K</i> α ₁)					
Межі 2 <i>θ</i> , °	6,00-110,625					
Крок 2 θ , °, час знімання, с	0,015, 300					
Параметри елементарної комірки, А	<i>a</i> = 8,0738(6)	a = 5,2800(3)	a = 3,1514(2)			
	c = 5,7012(11)	c = 8,5900(8)	c = 5,0194(5)			
Об'єм елементарної комірки V, Å ³	321,85(7)	207,40(3)	43,17(1)			
Густина, г/см ³	13,710 11,994 13,73					
Параметри профілю U; V; W	0,1	18(4); 0; 0,084	(3)			
Фактори розбіжності <i>R</i> _p ; <i>R</i> _{wp}	0,0938; 0,130					
Фактор розбіжності <i>R</i> в	0,0858	0,133	0,147			

у зразку Hf_{55,5}Re₂₂Al_{22,5}

Таблиця 3.8

Координати атомів у структурі $Hf_5Re_2Al_2$ (уточнений склад $Hf_5Re_{2,02(3)}Al_{1,98(3)}$, CT Hf_5CuSn_3 , СП *hP*9, ПГ *P*-62*m*, $B_{overall} = 0,28(8)$ Å²)

Атом	ПСТ	x	У	Z
Hf1	6g	0,321(2)	0	1/4
Hf2	4 <i>d</i>	1/3	2/3	0
Re	2b	0	0	0
M*	6g	0,645(3)	0	1/4

*M = 0,34(1)Re + 0,66(1)Al

Таблиця 3.9

[
Атс	ОМИ	<i>δ</i> , Å	КЧ
Hf1-	1 <i>M</i> *	2,61(3)	
	2 <i>M</i> *	2,74(1)	
	2 <i>M</i> *	2,862(3)	15
	2Re	2,96(1)	
	4Hf2	3,090(6)	
	4Hf1	3,851(6)	
Hf2-	2Hf2	2,848(1)	
	6 <i>M</i> *	2,971(9)	14
	6Hf1	3,090(6)	

Міжатомні віддалі та координаційні числа атомів у структурі Hf₅Re₂Al₂

Ат	ОМИ	<i>δ</i> , Å	КЧ
Re-	2Re	2,849(1)	
	6Hf1	2,96(1)	14
	6 <i>M</i> *	3,200(1)	
М*-	1Hf1	2,61(3)	
	2Hf1	2,74(2)	0
	2Hf1	2,862(3))
	4Hf2	2,97(1)	

*M = 0.34(1)Re + 0.66(1)Al

Координаційними многогранниками атомів Hf в ПСТ 6g (Hf1) є 15-вершинники, атомів Hf в ПСТ 4d (Hf2) та атомів Re – 14-вершинники Франка-Каспера, атомів статистичної суміші Al/Re – тришапкова тригональна призма, утворена виключно атомами Hf (рис. 3.12).

Структура сполуки $Hf_5Re_2Al_2 \in$ частково невпорядкованим варіантом типу Hf_5CuSn_3 [97], який у свою чергу, є тернарною впорядкованою похідною типу Ti_5Ga_4 [96] – структури включення типу Mn_5Si_3 [105] (табл. 3.10.). У структурі нової сполуки, $Hf_5Re_2Al_2$, атоми Re повністю займають ПСТ 2*b* просторової групи *P*6₃/*mcm* та у складі статистичної суміші з атомами Al (0,34(1)Re + 0,66(1)Al) – ПСТ 6*g*.

Рис. 3.12. Проекція кристалічної структури сполуки Hf₅Re₂Al₂ на площину *ab* і координаційні многогранники атомів.

Таблиця 3.10

Зайнятість правильних систем точок атомами у структурах

ПС	CT	Mn ₅ S	i ₃ [105]	Ti ₅ Ga	a ₄ [96]	Hf ₅ CuS	Sn ₃ [97]	Hf ₅	Re_2Al_2
		<i>a</i> = 6	,912 Å	a = 7,	861 Å	a=8,	527 Å	<i>a</i> = 8,	0738(6) Å
		<i>c</i> = 4	,812 Å	c = 5,	452 Å	<i>c</i> = 5,	822 Å	c = 5,7	7012(11) Å
	x	Mn1	0,2360	Ti1	0,29	Hf1	0,27	Hf1	0,321(2)
6g	У		0		0		0		0
	Z		1/4		1/4		1/4		1/4
	x	Mn2	1/3	Ti2	1/3	Hf2	1/3	Hf2	1/3
4d	У		2/3		2/3		2/3		2/3
	Z		0		0		0		0
	x	Si	0,5991	Gal	0,62	Sn	0,62	M*	0,645(3)
6g	У		0		0		0		0
	Z		1/4		1/4		1/4		1/4
	x			Ga2	0	Cu	0	Re	0
2 <i>b</i>	У				0		0		0
	\overline{z}				0		0		0

Мп₅Si₃, Ti₅Ga₄, Hf₅CuSn₃ та Hf₅Re₂Al₂ (ПГ *P*6₃/*mcm*)

*M = 0,34(1)Re + 0,66(1)Al

У системі Hf–Re–Si за температури дослідження підтверджено існування відомих раніше сполук HfReSi₂, HfReSi і к-фази Hf_{9+x}Re_{4-x}Si. Їхню кристалічну структуру уточнили за масивами порошкових дифракційних даних, одержаних на дифрактометрі STOE Stadi P (Си $K\alpha_1$ проміння).

На основі масиву експериментальних відбиттів *hkl* за допомогою програмного пакету FullProf Suite уточнено кристалічну структуру фаз зразка складу Hf₂₉Re₃₁Si₄₀ (табл. 3.11).

Таблиця 3.11

j op morely	2)	
Фаза	HfReSi	HfReSi ₂
Вміст, мас. % *	64	34
Структурний тип	ZrNiAl	ZrCrSi ₂
Символ Пірсона, кількість формульних одиниць <i>Z</i>	<i>hP</i> 9, 3	oP48, 12
Просторова група	<i>P</i> -62 <i>m</i>	Pbam
Дифрактометр	STOE Stadi P	
Проміння, Å	1,54056 (Cu <i>K</i> α ₁)	
Межі 2 <i>θ</i> , °	6,00–110,445	
Крок 2 θ , °, час знімання, с	0,015, 300	
Параметри елементарної комірки, Å	a = 6,9240(2) c = 3,3890(1)	a = 9,1271(3) b = 10,0356(4) c = 8,0708(3)
Об'єм елементарної комірки V , Å ³	140,71(1)	739,25(5)
Густина, г/см ³	13,906	11,344
Параметри профілю U; V; W	0,03(2); 0,01(1); 0,01(1)	
Фактори розбіжності <i>R</i> _p ; <i>R</i> _{wp}	0,954; 0,132	
Фактор розбіжності <i>R</i> _В	0,039	0,164
*Вміст фази Re ₄ Si ₇ (СТ Re ₄ Si ₇ ,	$\Pi\Gamma Cm, a=23,20$	60(6), b = 3,1377(7)

Деталі експерименту і кристалографічні характеристики фаз

у зразку Hf₂₉Re₃₁Si₄₀

c = 8,2810(16) Å, $\beta = 92,711(16)^\circ$) становить 2 мас. %.

На рис. 3.13 зображено дифрактограму, а на рис. 3.14 – фотографію поверхні шліфа зразка складу Hf₂₉Re₃₁Si₄₀.

Рис. 3.13. Дифрактограма зразка складу Hf₂₉Re₃₁Si₄₀.

Рис. 3.14. Фотографія поверхні шліфа зразка складу Hf₂₉Re₃₁Si₄₀ (світла фаза – HfReSi; сіра фаза – HfReSi₂; темна фаза – Re₄Si₇).
У табл. 3.12 подано координати атомів, у табл. 3.13 – міжатомні віддалі у структурі сполуки HfReSi. На рис. 3.15 зображено проекцію кристалічної структури цієї сполуки на площину *ab* і координаційні многогранники атомів. Координаційними многогранниками атомів Hf є пентагональні призми з сімома додатковими атомами, атомів Re – тетрагональні призми з чотирма додатковими атомами, атомів Si – тригональні призми з трьома додатковими атомами.

Таблиця 3.12

Координати атомів у структурі сполуки HfReSi (CT ZrNiAl, СП *hP*9, ПГ *P*-62*m*, $B_{overall} = 0,72(3)$ Å²)

Атом	ПСТ	x	у	Z
Hf	3 <i>f</i>	0,5965(3)	0	0
Re	3g	0,2557(2)	0	1/2
Sil	2 <i>d</i>	1/3	2/3	1/2
Si2	1 <i>a</i>	0	0	0

Таблиця 3.13

Міжатомні віддалі та координаційні числа атомів у структурі сполуки HfReSi

Ат	ОМИ	<i>δ</i> , Å	КЧ	Ат	ОМИ	<i>δ</i> , Å	КЧ
Hf-	4Si1	2,704(1)		Re-	2Si2	2,451(1)	
	1Si2	2,794(2)			2Si1	2,618(1)	
	2Re	2,905(2)	17		2Hf	2,905(2)	12
	4Re	2,977(2)	17		4Hf	2,977(1)	12
	2Hf	3,389(1)			2Re	3,067(2)	
	4Hf	3,650(2)					
Si1-	3Re	2,618(1)	9	Si2-	6Re	2,451(1)	9
	6Hf	2,704(1)			3Hf	2,794(1)	

Рис. 3.15. Проекція кристалічної структури сполуки HfReSi на площину *ab* і координаційні многогранники атомів.

Координати атомів і міжатомні віддалі у структурі сполуки $HfReSi_2$ наведено в табл. 3.14 і 3.15, відповідно. Проекцію кристалічної структури сполуки $HfReSi_2$ на площину *ab* і координаційні многогранники атомів зображено на рис. 3.16. Координаційними многогранниками атомів $Hf \in i$ пентагональні призми з сімома додатковими атомами та 15-вершинники, атомів Re - iкосаедри, атомів Si - 14- 12- (в тому числі ікосаедри) та 11-вершинники, а також тетрагональні антипризми з двома додатковими атомами.

Таблиця 3.14

Координати атомів у структурі сполуки HfReSi₂

(CT ZrCrSi₂, CП oP48, ПГ Pbam, $B_{overall} = 1,19(5)$ Å²)

Атом	ПСТ	x	У	Ζ
Hf1	8 <i>i</i>	0,3274(6)	0,0458(5)	0,2477(9)
Hf2	4g	0,3349(12)	0,3166(8)	0
Re1	8 <i>i</i>	0,0880(5)	0,2601(5)	0,2462(9)
Re2	4 <i>e</i>	0	0	0,2424(14)
Sil	8 <i>i</i>	0,327(4)	0,326(3)	0,363(3)
Si2	4 <i>h</i>	0,058(7)	0,375(5)	1/2
Si3	4h	0,147(7)	0,105(5)	1/2
Si4	4 <i>g</i>	0,019(7)	0,375(5)	0
Si5	4 <i>h</i>	0,111(7)	0,115(5)	0

Рис. 3.16. Проекція кристалічної структури сполуки HfReSi₂ на площину *ab* і координаційні многогранники атомів.

Таблиця 3.15

ъ <i>к</i>	• •	· . ·	•	•	
N_{1} M_{1}	Р1 П П Я П1	$T_{2} \kappa_{00} n_{1} u_{1} u_{1} u_{1} u_{1}$	UNCER STOMEN	I CTNVKTVN1	$C \Pi \cap \Pi V K H H H K e S I_{a}$
	ыддал	та координациии	-including aloning y	στργκτγρι	
		1	2	12 21	-

Ато	ОМИ	<i>δ</i> , Å	КЧ] [Ат	ОМИ	<i>δ</i> , Å	КЧ
Hf1-	1Si3	2,68(4)			Re1-	1Si2	2,37(3)	
	1Si4	2,77(4)				1Si4	2,38 (3)	
	1Si1	2,78(3)				1Si1	2,47(4)	
	1Si2	2,86(4)				1Si5	2,47(3)	
	1Si5	2,89(5)				1Si3	2,63 (3)	
	1Si1	2,962(3)				1Si1	2,70(4)	12
	1Re1	2,969(7)				1Re2	2,731(5)	12
	1Si4	2,983(4)	15			1Hf1	2,969(7)	
	1Re2	3,024(6)				1Hf2	3,06(1)	
	1Si2	3,04(5)				1Hf1	3,066(7)	
	1Re1	3,066(7)				1Hf1	3,074(7)	
	1Re1	3,074(7)				1Hf2	3,14(1)	
	1Hf1	3,282(8)			Re2-	2Si5	2,49(4)	
	1Hf2	3,374(9)				2Si1	2,55(3)	
	1Hf2	3,389(9)				2Si3	2,69(4)	12
Hf2-	1Si4	2,55(6)				2Re1	2,731(5)	12
	1Si5	2,61(6)				2Hf1	3,024(6)	
	1Si5	2,88(6)				2Hf2	3,08(1)	
	2Si1	2,93(2)			Si2-	2Re1	2,37(3)	
	1Si4	2,94(6)				1Si2	2,72(7)	
	1Si5	3,04(5)	17			2Si1	2,74(7)	
	2Re1	3,06(1)				1Si3	2,83(7)	12
	2Re2	3,08(1)				2Hf1	2,86(4)	
	2Re1	3,14(1)				2Hf1	3,04(5)	
	2Hf1	3,374(9)				2Si1	3,12(6)	
	2Hf1	3,389(9)					•	

Закінчення таблиці 3.15

Атс	ОМИ	<i>δ</i> , Å	КЧ	
Si1-	1Si1	2,21(3)		
	1Re1	2,47(4)		
	1Re2	2,55 (3)		
	1Re1	2,70(4)		
	1Si2	2,74(7)		
	1Hf1	2,78(3)	12	
	1Hf2	2,93(2)	12	
	1Hf1	2,962(3)		
	1Si3	2,97(6)		
	1Si3	3,02(5)		
	1Si2	3,12(6)		
	1Si3	3,20(7)		
Si3-	2Re1	2,63(3)		
	2Hf1	2,69(4)		
	2Re2	2,69(4)		
	1Si2	2,83 (7)	14	
	2Si1	2,97(6)		
	2Si1	3,02(5)]	
	2Si1	3,20(6)		
	1Si3	3,41(8)		

Ат	ОМИ	<i>δ</i> , Å	КЧ
Si4-	2Re1	2,38(3)	
	1Si4	2,53(7)	
	1Hf2	2,55(6)	
	1Si5	2,74(7)	10
	2Hf1	2,77 (4)	
	1Hf2	2,94(6)	
	2Hf1	2,98(4)	
Si5-	2Re1	2,47(3)	
	2Re2	2,49(4)	
	1Hf2	2,61(6)	
	1Si4	2,74(7)	11
	1Hf2	2,88(6)	11
	2Hf1	2,89(5)	
	1Hf2	3,04(5)	
	1Si5	3,08(8)	

Уточнення кристалічної структури індивідуальних фаз проведено також зразка складу Hf₇₅Re₁₈Si₇ (табл. 3.16, рис. 3.17). Результати для аналізу підтверджено рентгеноструктурного результатами локального рентгеноспектрального аналізу (рис. 3.18).

Таблиця 3.16

Деталі експерименту і кристалографічні характеристики фаз

Фаза	Hf _{10,26} Re _{2,74} Si	Hf		
Вміст, мас. % *	71	27		
Структурний тип	Hf ₉ Mo ₄ B	Mg		
Символ Пірсона, кількість формульних одиниць <i>Z</i>	hP28, 2	hP2, 2		
Просторова група	P6 ₃ /mmc	P6 ₃ /mmc		
Дифрактометр	STOE Stadi P			
Проміння, Å	1,54056 (Cu <i>K</i> α ₁)			
Межі 2 <i>θ</i> , °	6,00–110,625			
Крок 2 θ , °, час знімання, с	0,015, 300			
Параметри елементарної комірки, Å	a = 8,5835(12) c = 8,7135(13)	a = 3,1952(5) c = 5,0638(8)		
Об'єм елементарної комірки V , Å ³	555,97(18)	44,77(1)		
Густина, г/см ³	14,155	13,241		
Параметри профілю U; V; W	1,04(2); -0,09(1); 0,03(2)			
Фактори розбіжності <i>R</i> _p ; <i>R</i> _{wp}	0,719; 0,931			
Фактор розбіжності <i>R</i> _В	0,037	0,049		
*Вміст фази Hf ₂ Si (СТ Cu ₂ Al, ПГ <i>I</i> 4/ <i>mcm</i> , $a = 6,8403(12), c = 4,6472(11) Å$)				

у зразку Hf₇₅Re₁₈Si₇

становить 2 мас. %.

Рис. 3.17. Дифрактограма зразка складу Hf₇₅Re₁₈Si₇.

Рис. 3.18. Фотографія поверхні шліфа зразка складу Hf75Re18Si7 (сіра фаза – Hf_{10,26}Re_{2,74}Si; темна фаза – Hf).

Координати атомів у структурі к-фази $Hf_{10,26}Re_{2,74}Si$ наведено в табл. 3.17, а у табл. 3.18 — міжатомні віддалі у цій структурі. Проекція кристалічної структури к-фази $Hf_{10,26}Re_{2,74}Si$ на площину *ab* і координаційні многогранники атомів зображені на рис. 3.19.

Таблиця 3.17

Атом	ПСТ	x	у	Z
Hf1	12 <i>k</i>	0,19892(3)	0,39786(3)	0,04805(3)
Hf2	6 <i>h</i>	0,53753(7)	0,07502(7)	1/4
M*	6 <i>h</i>	0,89009(5)	0,78021(5)	1/4
Re	2 <i>a</i>	0	0	0
Si	2 <i>c</i>	1/3	2/3	1/4

Координати атомів у структурі сполуки $Hf_{10,26(3)}Re_{2,74(3)}Si$ (СТ Hf_9Mo_4B , СП *hP*28, ПГ *P6*₃/*mmc*, $B_{overall} = 0,22(3)$ Å²)

M = 0,42(1)Hf + 0,58(1)Re

Рис. 3.19. Проекція кристалічної структури сполуки Hf_{10,26}Re_{2,74}Si на площину *ab* і координаційні многогранники атомів.

Координаційними многогранниками атомів Hf є пентагональні призми з трьома або чотирма додатковими атомами, атомів Re та атомів статистичної суміші Hf/Re – ікосаедри, атомів Si – тригональні призми з трьома додатковими атомами, утворені виключно атомами Hf.

Таблиця 3.18

Атоми		<i>δ</i> , Å	КЧ
Hf1-	1Si	2,663(1)	
	1M	2,915(1)	
	1Re	2,987(1)	
	2Hf1	3,074(1)	
	2 <i>M</i>	3,111(1)	14
	2Hf2	3,200(1)	
	2Hf2	3,254(1)	
	2Hf1	3,461(1)	
	1Hf1	3,519(1)	
Hf2-	2 <i>M</i>	2,888(1)	
	1Si	3,036(1)	
	4Hf1	3,200(1)	13
	4Hf1	3,254(1)	
	2Hf2	3,326(1)	

у структурі сполуки Hf_{10,26}Re_{2,74}Si

Міжатомні віддалі та координаційні числа атомів

Атоми		<i>δ</i> , Å	КЧ
<i>M</i> 1-	2Re	2,723(1)	
	2M	2,830(1)	
	2Hf2	2,888(1)	12
	2Hf1	2,915(1)	
	4Hf1	3,111(1)	
Re-	6 <i>M</i>	2,723(1)	12
	6Hf1	2,987(1)	12
Si-	6Hf1	2,663(1)	9
	3Hf2	3,036(1)	

M = 0,42(1)Hf + 0,58(1)Re

3.2.2. Кристалічні структури твердих розчинів

У системі Hf–Re–Al при 1000 °C існують обмежені тверді розчини заміщення на основі бінарних сполук HfRe₂ і HfAl₂ (CT MgZn₂) [106, 107]. Для підтвердження заміщення атомів Re атомами Al в HfRe₂, а також атомів Al атомами Re в HfAl₂ виконано уточнення кристалічних структур фаз сплаву складу Hf₂₅Re₂₅Al₅₀ на основі масиву порошкових дифракційних даних, одержаних на дифрактометрі STOE Stadi P (Cu K α_1 проміння). На рис. 3.20 зображено дифрактограму зразка Hf₂₅Re₂₅Al₅₀, де наявні відбиття обох фаз зі структурою типу MgZn₂. Підтвердженням існування фаз на ізоконцентраті 33,3 ат. % Hf є результати локального рентгеноспектрального аналізу (рис. 3.21).

Рис. 3.20. Дифрактограма зразка складу $Hf_{25}Re_{25}Al_{50}$.

Деталі експерименту і кристалографічні характеристики фаз узагальнено в табл. 3.19. Координати і параметри зміщення атомів у структурі фази HfRe_{0,88}Al_{1,12} подано в табл. 3.20, а міжатомні віддалі – в табл. 3.21. Координати атомів і міжатомні віддалі у структурі фази HfRe_{0,26}Al_{1,74} наведено в табл. 3.22 і 3.23, відповідно. Проекцію кристалічної структури фази HfRe_{0,88}Al_{1,12} на площину *ab* і координаційні многогранники атомів зображено на рис. 3.22.

Таблиця 3.19

Склад фази	$HfRe_{0,88}Al_{1,12}$	HfRe _{0,26} Al _{1,74}	
Вміст, мас. %	75,7	23,9	
Структурний тип	MgZn ₂	MgZn ₂	
Символ Пірсона, кількість формульних одиниць <i>Z</i>	<i>hP</i> 12, 4	hP12, 4	
Просторова група	P6 ₃ /mmc	P6 ₃ /mmc	
Дифрактометр	STOE	Stadi P	
Проміння, Å	1,54056 (Cu <i>K</i> α ₁)		
Межі 2 <i>θ</i> , °	6,00-104,865		
Крок 2 <i>θ</i> , °, час знімання, с	0,015	, 300	
Параметри елементарної комірки, Å	a = 5,2443(2) c = 8,5281(4)	a = 5,2545(3) c = 8,5660(4)	
Об'єм елементарної комірки V , Å ³	203,12(1)	204,82(2)	
Густина, г/см ³	12,19	8,898	
Параметри профілю <i>U</i> ; <i>V</i> ; <i>W</i>	0,091(3); 0,015(1); 0,007(1)		
Фактори розбіжності <i>R</i> _p ; <i>R</i> _{wp}	0,0779; 0,103		
Фактор розбіжності <i>R</i> _В	0,0299	0,0494	
*Вміст фази Re ₄ Al ₁₁ (СТ Мп ₄ Al ₁₁ , СП а	$P15, \Pi\Gamma P-1, a =$	5,172, b = 5,154,	

т ·	•	1 • •	1	
Петалі експеі	пименту 1 кпистя	апографичні харак	теристики фаз	HTRes AL*
Actual exercise	primerry r kpriere	wioi pupi iiii supuk	reprietnikn wus	$111102-x^{1}11x$

*Вміст фази Re₄Al₁₁ (СТ Mn₄Al₁₁, СП *aP*15, ПГ *P*-1, *a* = 5,172, *b* = 5,154, c = 8,959 Å, $\alpha = 74,83$, $\beta = 90,43$, $\gamma = 80,24^{\circ}$) становить < 1 мас. %.

Рис. 3.21. Фотографія поверхні шліфа зразка складу Hf₂₅Re₂₅Al₅₀: світла фаза – HfRe_{0,88}Al_{1,12}; сіра фаза – HfRe_{0,26}Al_{1,74}; темна фаза – Re₄Al₁₁.

Таблиця 3.20

Координати і параметри зміщення атомів у структурі

HfRe_{0,88(1)}Al_{1,12(1)} (СП *hP*12, ПГ *P*6₃/*mmc*)

Атом	ПСТ	x	У	Z	$B_{\rm iso},{\rm \AA}^2$
Hf	4 <i>f</i>	1/3	2/3	0,5629(2)	0,46(1)
<i>M</i> 1 *	2 <i>a</i>	0	0	0	0,15(1)
M2**	6 <i>h</i>	0,1700(5)	0,3400(5)	1/4	0,29(1)

*M1 = 0,385(1)Re + 0,615(1)Al; **M2 = 0,459(1)Re + 0,541(1)Al

Таблиця 3.21

Координати атомів у структурі HfRe_{0,26(1)}Al_{1,74(1)}

(CII *hP*12, III *P*6₃/*mmc*, $B_{\text{overall}} = 0,024(2) \text{ Å}^2$)

Атом	ПСТ	x	У	Ζ
Hf1	4 <i>f</i>	1/3	2/3	0,5644(3)
<i>M</i> 1*	2 <i>a</i>	0	0	0
M2**	6 <i>h</i>	0,1698(17)	0,3396(17)	1/4

*M1 = 0,155(1)Re + 0,845(1)Al; **M2 = 0,124(1)Re + 0,876(1)Al

1 1		•	•	· · · ·		•	'TT(D) A1	
- MI1	іжатомні	вілла п	1 TA	коорлинациин	чиспа атом	1R \	V CTNVKTVN1 HTRea 00 AI 1 1	n
1.11	maromin	ыддая	1 14	координациии		J J	<i>y</i> e i p j k i j p i i i i i i i i i i	2

Атоми		δ, Å	Ku
Hf-	3 <i>M</i> 2	3,053(2)	
	6 <i>M</i> 2	3,070(3)	
	3 <i>M</i> 1	3,075(1)	16
	1Hf	3,192(2)	
	3Hf	3,212(1)	

Ат	ОМИ	<i>δ</i> , Å	КЧ
<i>M</i> 1-	6 <i>M</i> 2	2,633(1)	12
	6Hf	3,075(1)	14
М2-	2 <i>M</i> 2	2,569(3)	
	2 <i>M</i> 1	2,633 (1)	
	2 <i>M</i> 2	2,675(3)	12
	2Hf	3,053(2)	
	4Hf	3,069(3)	

*M1 = 0,385(1)Re + 0,615(1)Al; **M2 = 0,459(1)Re + 0,541(1)Al

Таблиця 3.23

Міжатомні віддалі та координаційні числа атомів у структурі HfRe_{0.26}Al_{1,74}

Атоми		<i>δ</i> , Å	КЧ
Hf-	6 <i>M</i> 2	3,071(9)	
	3 <i>M</i> 2	3,077(6)	
	3 <i>M</i> 1	3,083(1)	16
	1Hf	3,180(4)	
	3Hf	3,228(1)	
	3Hf	3,228(1)	

Ат	ОМИ	<i>δ</i> , Å	КЧ
<i>M</i> 1-	6 <i>M</i> 2	2,641(5)	12
	6Hf	3,083(1)	12
М2-	2 <i>M</i> 2	2,577(9)	
	2 <i>M</i> 1	2,641(5)	
	2 <i>M</i> 2	2,677(14)	12
	4Hf	3,071(9)	
	2Hf	3,077(4)	

*M1 = 0,155(1)Re + 0,845(1)Al; **M2 = 0,124(1)Re + 0,876(1)Al

Кристалічна структура обох фаз належить до фаз Лавеса, а координаційне оточення атомів гафнію і статистичних сумішей Re/Al є типовим для структур такого типу (рис. 3.22). Атоми Hf центрують 16-вершинники Франка-Каспера, атоми Re та Al – ікосаедри.

Рис. 3.22. Проекція кристалічної структури HfRe_{0,88}Al_{1,12} на площину *ab* і координаційні поліедри атомів.

Твердий розчин заміщення на основі сполуки HfRe₂ зі структурою типу MgZn₂ формується також у системі Hf–Re–Si [102, 108]. З метою визначення параметрів його структури синтезовано зразок складу Hf₃₃Re₅₇Si₁₀ і уточнено кристалічну структуру фази при складі HfRe_{1,78}Si_{0,22} (порошковий дифрактометр STOE Stadi P (Cu $K\alpha_1$ проміння) за допомогою програмного пакету FullProf Suite. На рис. 3.23 представлено фотографію поверхні шліфа і результати рентгеноспектрального аналізу, а на рис. 3.24 – дифрактограму цього зразка.

Рис. 3.23. Фотографія поверхні шліфа зразка складу $Hf_{33}Re_{57}Si_{10}$: світла фаза – $HfRe_{1,78}Si_{0,22}$; темна фаза – Hf_5Si_3 .

Рис. 3.24. Дифрактограма зразка складу $Hf_{33}Re_{57}Si_{10}$.

Деталі експерименту і кристалографічні характеристики фази узагальнено в табл. 3.24. Координати і параметри зміщення атомів у цій структурі подано в табл. 3.25, а міжатомні віддалі – в табл. 3.26.

Таблиця 3.24

Деталі експерименту і кристалографічні характеристики фази HfRe_{1,78}Si_{0,22}*

Структурний тип	$MgZn_2$
	<u> </u>
Символ Пірсона	hP12
Просторова група, кількість формульних	
	$P6_3/mmc, 4$
одиниць Z	
Дифрактометр	STOE Stadi P
Проміння, А	1,54056 (Cu <i>K</i> α ₁)
N. : 20.0	(00 110 02
Межі 20, °	6,00-110,82
1	

Крок 2 <i>θ</i> , °, час знімання, с	0,015, 300
Параметри елементарної комірки, Å	<i>a</i> = 5,2253(2)
	c = 8,5497(4)
Об'єм елементарної комірки V, Å ³	202,16(1)
Густина, г/см ³	16,93
Параметри профілю U; V; W	0,181(2); 0,001(1); 0,009(2)
Фактори розбіжності $R_{\rm p}$; $R_{\rm wp}$	0,0905; 0,119
Фактор розбіжності <i>R</i> _В	0,0497
*Вміст фази Hf ₅ Si ₃ (СТ Mn ₅ Si ₃ , СП <i>hP</i> 1	6, $\Pi\Gamma P6_3/mcm$, $a = 7,829(1)$,
c = 5,512(1) Å) становить ~2 мас. %.	

Таблиця 3.25

Координати і параметри зміщення атомів у структурі

HfRe_{1,78(1)}Si_{0,22(1)} (СП *h*P12, ПГ *P*6₃/*mmc*)

Атом	ПСТ	x	У	Z	$B_{\rm iso},{ m \AA}^2$
Hf	4 <i>f</i>	1/3	2/3	0,5631(2)	0,317(1)
<i>M</i> 1*	2 <i>a</i>	0	0	0	0,375(3)
M2**	6 <i>h</i>	0,1719(3)	0,3439(3)	1/4	0,439(4)

*M1 = 0.96(1)Re + 0.04(1)Si; **M2 = 0.87(1)Re + 0.13(1)Si

Таблиця 3.26

КЧ

12

12

δ, Å

2,644(1)

3,0646(3)

2,530(3)

2,6439(8)

2,690(3)

2,644(1)

Міжатомні віддалі та координаційні числа атомів у структурі HfRe_{1,78}Si_{0,22}

Атоми

6*M*2

6Hf

2M2

2*M*1

2*M*2

6*M*2

*M*1-

М2-

Атоми		<i>δ</i> , Å	КЧ
Hf-	3 <i>M</i> 2	3,049(2)	
	6 <i>M</i> 2	3,063(2)	
	3 <i>M</i> 1	3,0646(3)	16
	1Hf	3,196(2)	
	3Hf	3,2038(7)	

*M1 = 0.96(1)Re + 0.04(1)Si; **M2 = 0.87(1)Re + 0.13(1)Si

3.3. Мікротвердість зразків

З метою визначення залежності мікротвердості від хімічного складу виконали дослідження восьми зразків. Мікротвердість (HV^1) для окремих зразків у системах Hf–Re–{Al, Si} визначали методом Віккерса. Під дією сили навантаження 9,807 Н впродовж 10 секунд вдавлювали алмазну піраміду у зразок, тоді вимірювали діагоналі відбитка і за формулою визначали твердість зразка. Для кожного зразка виконано не менше 10 вимірювань. Усереднені значення подано в табл. 3.27. Як приклад, на рис. 3.25 наведено зображення поверхні зразка Hf₃₃Re₅₇Si₁₀ з відбитками індентора в об'єктивах твердоміра NOVOTEST TC-MKB та металмікроскопа NEOPHOT 30.

Таблиця 3.27

Усереднені значення мікротвердості для окремих зразків

Склад зразка (основна фаза)	Мікротвердість, HV ¹
Hf–Re–Si	
$Hf_{60}Re_5Si_{35} (Hf_5Si_3)$	955
$Hf_{65}Re_{5}Si_{30} (Hf_{2}Si)$	1099
$Hf_{33}Re_{57}Si_{10}$ (HfRe _{1,78} Si _{0,22})	1308
$Hf_{10}Re_{70}Si_{20} (Hf_5Re_{21}Si_3)$	1675
Hf–Re–Al	
$Hf_{50}Re_{15}Al_{35} (Hf_{3}Al_{2})$	922
$Hf_{55,5}Re_{22}Al_{22,5} (Hf_5Re_2Al_2)$	783
$Hf_{25}Re_{25}Al_{50} (HfRe_{0,88}Al_{1,12})$	948
$Hf_{5}Re_{55}Al_{40} (Re_{2}Al)$	1179

систем Hf-Re-{Al, Si}

Згідно з одержаними результатами, мікротвердість для зразків систем Hf-Re-Al i Hf-Re-Si зростає зі збільшенням вмісту ренію в них. Крім того, сплави, що містять силіцій, мають більші значення мікротвердості, ніж сплави з алюмінієм.

Рис. 3.25. Зображення відбитків індентора на поверхні зразка Hf₃₃Re₅₇Si₁₀ в об'єктивах твердоміра NOVOTEST TC-MKB (*a*) та металмікроскопа NEOPHOT 30 (*б*).

3.4. Електронна структура фаз HfRe_{2-x}Al_x

Для встановлення характеру хімічного зв'язку у сполуках HfRe₂ і HfAl₂, структури яких належать до типу фаз Лавеса MgZn₂, досліджено розподіл електронної густини – загальний TDOS (total DOS) і частковий PDOS (partial DOS) у цих сполуках.

Розподіл електронної густини DOS системи описує кількість станів на кожному енергетичному рівні, який доступний для зайняття електронами. Висока DOS на певному енергетичному рівні означає, що є більше станів, доступних для зайняття електронами [109, 110]. Моделювання густини станів для кожного елемента, що входить до складу сполуки, загалом дає змогу передбачити домінуючий тип хімічного зв'язку чи деякі фізико-хімічні властивості. На рис. 3.26 і 3.27 зображено TDOS (*a*) і PDOS (*б-г*) поблизу рівня Фермі. Сполуки HfRe₂ і HfAl₂ демонструють металічний характер, оскільки значення TDOS обох фаз на рівні Фермі вищі за нуль. Важливою особливістю

TDOS для обох фаз є наявність долини (псевдощілини) поблизу рівня Фермі, яка може свідчити про наявність ковалентної складової зв'язку.

Рис. 3.26. Загальна (*a*) та часткова (б-*г*) густина станів для сполуки HfRe₂.

Інтенсивні смуги навколо енергії Фермі у $HfRe_2$ в основному походять від *d*-станів атомів Re1 (ПСТ 6*h*). Це вказує на домінування *d*-станів, які також домінують у провідності сполуки $HfRe_2$. За вищих енергій відбувається гібридизація *d*-станів гафнію. Трохи вище рівня Фермі смуги виникають в основному з *p*-станів атомів Re1. Вони також сильно гібридизовані. У сполуці HfAl₂ нижче рівня Фермі в основному домінують валентні електрони атомів Al. Сильна гібридизація *s*- та *p*-станів Al сприяє пікам зв'язування в TDOS у нижчому діапазоні енергії. TDOS поблизу рівня Фермі походить головним чином з локалізованих *d*-станів Hf з незначним внеском від *p*-станів Al i Hf. Крім того, гібридизація *p*-станів Al i *d*-станів Hf призводить до виникнення ковалентного зв'язку.

Рис. 3.27. Загальна (*a*) та часткова (*б-г*) густина станів для сполуки HfAl₂.

У системі Hf-Re-Al за 1000 °С простежується утворення твердих розчинів заміщення на основі сполук HfRe₂ і HfAl₂ зі збереженням вихідної

структури типу MgZn₂. З метою визначення кореляції між електричними властивостями і електронною структурою виконано розрахунок розподілу електронної густини TDOS для фази Hf(Re_{0,5}Al_{0,5})₂ (рис. 3.28). Моделювання електронної структури фази Hf(Re_{0,5}Al_{0,5})₂ із 100 % зайнятістю атомами усіх позицій (ПСТ 4*f* – 100 % Hf; 6*h* – 50 % Re + 50 % Al впорядковано; ПСТ 2*a* – 50 % Re + 50 % Al впорядковано) показує, що сполука є провідником. На рівні Фермі значення TDOS тернарної фази також вищі за нуль. В околі і нижче рівня Фермі у Hf(Re_{0,5}Al_{0,5})₂ є значний вплив як *p*-електронів атомів Al, так і *d*-електронів атомів Re.

Рис. 3.28. Загальна густина станів для фази Hf(Re_{0,5}Al_{0,5})₂.

Функція локалізації електронів (ELF) широко застосовується до різних систем від атома до молекул і твердих тіл.

Моделювання здійснювали у наближенні локальної густини (LDA) і узагальненого градієнта GGA для k-сітки 10×10×10. Спектральну функцію Блоха (зонний енергетичний спектр) і густину електронних станів розраховували, розбивши зону Бріллюена на 1000 k-точок. Візуалізацію об'ємних даних проводили з використанням програми VESTA [94].

Розподіл функції локалізації електронів для HfRe₂, HfAl₂ і Hf(Re_{0,5}Al_{0,5})₂ зображено на рис. 3.29. Спостерігається значна концентрація електронної густини для HfRe₂ (рис. 3.29, *a*). Дещо нижча концентрація електронної густини для HfAl₂ і Hf(Re_{0,5}Al_{0,5})₂ (рис. 3.29, *b*, *b*), ймовірно пояснюється тим, що значення електронегативності за Полінгом для Hf становить 1,3 eB, Al – 1,61 eB i Re – 1,9 eB i [104].

Рис. 3.29. Функція локалізації електронів для структур HfRe₂ (*a*), HfAl₂ (*б*) та Hf(Re_{0,5}Al_{0,5})₂ (*в*).

3.5. Електрокінетичні властивості фаз $HfRe_{2-x}M_x$ (M = Al, Si)

Для трьох зразків з областей твердих розчинів зі структурою типу MgZn₂ виконано вимірювання температурних залежностей коефіцієнта термо-е.р.с. (потенціометричним методом відносно міді) і електроопору (двозондовим методом).

Крива залежності диференціальної термо-е.р.с. (коефіцієнта Зеебека) демонструє незначне зростання зі збільшенням температури лише для зразка складу $Hf_{30}Re_{10}Al_{60}$ [111], тоді як дві інші залежності (зразки $Hf_{30}Re_{57}Al_{10}$ і $Hf_{33}Re_{60}Si_7$) демонструють спадання (рис. 3.30). Ймовірно вміст *p*-елемента має вирішальний вплив на залежність коефіцієнта Зеебека від температури у зразках систем Hf-Re–{Al, Si}. Невеликі значення термо-е.р.с. і її від'ємний знак для зразків з малим вмістом Al чи Si, вказують, що електрони є основними носіями струму.

Рис. 3.30. Залежність диференціальної термо-е.р.с. від температури для фаз зі структурою типу MgZn₂.

Залежність питомого електроопору ρ від температури (рис. 3.31) з незначним відхиленням від лінійності та невеликими значеннями питомого електроопору у вибраному температурному інтервалі є типовою для сполук з металічним типом провідності.

Рис. 3.31. Температурна залежність питомого електроопору для фаз зі структурою типу MgZn₂.

Якщо порівняти одержані результати i3 значеннями питомого електроопору простих речовин за 293 К Hf (р = 35,1·10⁻⁸ Ом·м), Re $(\rho = 19,3 \cdot 10^{-8} \text{ Om} \cdot \text{m})$, Al $(\rho = 2,6548 \cdot 10^{-8} \text{ Om} \cdot \text{m})$ i Si $(\rho = 1 \cdot 10^{-3} \text{ Om} \cdot \text{m})$ [104], to можна виділити певну закономірність. У досліджених зразках вміст гафнію є приблизно однаковим, також близькі за вмістом ренію зразки Hf₃₃Re₅₇Al₁₀ і Hf₃₃Re₆₀Si₇. Тому можна припустити, що на значення питомого електроопору в вибраному температурному інтервалі вирішальний плив природа має *р*-елемента (Al чи Si).

3.6. Електрохімічні властивості зразків

Гідрогенсорбційні характеристики виміряно протягом 50 зарядциклів. Електрохімічне гідрування розрядних сплаву виконано У двохелектродних моделях хімічних джерел електричної енергії типу "Swagelok-cell", у яких подрібнений, змочений 6 М розчином КОН та спресований зразок, виконував роль анода, а катодом була суміш нікель(II) гідроксиду та графіту. При проходженні електричного струму відбуваються такі процеси:

Ni(OH)₂ + OH⁻ – e⁻ $\stackrel{3аряджання}{\longleftarrow}$ NiOOH + H₂O Hf(Re,Al)₂ + x H₂O + x e⁻ $\stackrel{3аряджання}{\longleftarrow}$ Hf(Re,Al)₂H_x + x OH⁻

3.6.1. Електрохімічне гідрування сплаву Hf₆₄Re₂₉Al₇

Фазовий аналіз зразка складу $Hf_{64}Re_{29}Al_7$ показав, що електрод містив три фази, кристалічні структури яких придатні для включення атомів гідрогену: $Hf_{21}Re_{25}$ (~65 мас. %, CT $Zr_{21}Re_{25}$, ПГ *R*-3*c*), Hf (~25 мас. %, CT Mg, ПГ *P*6₃/*mmc*) і $Hf_5Re_2Al_2$ (~10 мас. %, CT Hf_5CuSn_3 , ПГ *P*6₃/*mcm*). Дифрактограми зразка $Hf_{64}Re_{29}Al_7$ до і після електрохімічного гідрування зображені на рис. 3.32. На рис. 3.33 показано розподіл елементів на поверхні зразка після електрохімічного гідрування, а на рис. 3.34 – зображення електрода $Hf_{64}Re_{29}Al_7$ після електрохімічного гідрування, отримані на скануючому електронному мікроскопі.

Унаслідок гідрування простежується збільшення параметрів елементарної комірки фаз, зокрема для основної фази: $a = 25,64(5) \rightarrow 25,96(2)$ Å, $c = 8,73(2) \rightarrow 8,834(7)$ Å. Електрод на основі сплаву Hf₆₄Re₂₉Al₇ внаслідок активного процесу гідрування/дегідрування зазнає значної аморфізації, але гідрогенсорбційні характеристики є прийнятними. Питома розрядна ємність сягає 69 мА.год/г. Вибрані розрядні криві для хімічного джерела електричної енергії з електродом на основі сплаву складу Hf₆₄Re₂₉Al₇ зображені на рис. 3.35. Зі збільшенням порядку циклу через процеси аморфізації та поверхневі корозійні процеси (темна фаза на BSE-детекторі, див. рис. 3.34) простежуємо незначне зменшення ємності – 60 мА·год/г (50 цикл) [112].

Рис. 3.32. Дифрактограма зразка Hf₆₄Re₂₉Al₇ до (синя) і після (червона) гідрування (ДРОН 2.0М, Fe *К*α проміння).

Рис. 3.33. Розподіл елементів на поверхні зразка складу Hf₆₄Re₂₉Al₇ після електрохімічного гідрування.

Рис. 3.34. Зображення електрода Hf₆₄Re₂₉Al₇ після електрохімічного гідрування (SE-детектор зліва та BSE-детектор справа) – збільшення в 800 разів (*a*), 1500 разів (*б*), 4000 разів (*в*).

Рис. 3.35. Вибрані розрядні криві для хімічного джерела електричної енергії з електродом на основі сплаву Hf₆₄Re₂₉Al₇.

3.6.2. Електрохімічне гідрування твердих розчинів HfRe_{2-x}Al_x

Структури фаз Лавеса піддаються оборотному гідруванню/дегідруванню. З метою дослідження впливу співвідношення вмісту ренію і алюмінію на гідрогенсорбційні властивості фаз твердих розчинів $HfRe_{2-x}Al_x$ виготовлено і піддано електрохімічному гідруванню зразки складів $Hf_{32}Re_{53}Al_{15}$, $Hf_{30}Re_{15}Al_{55}$ і $Hf_{30}Re_{10}Al_{60}$, дифрактограми яких до і після гідрування зображені на рис. 3.36.

Рис. 3.36. Дифрактограми зразків Hf₃₂Re₅₃Al₁₅ (*a*), Hf₃₀Re₁₅Al₅₅ (*б*) і Hf₃₀Re₁₀Al₆₀ (*в*) до (синя) і після (червона) гідрування (ДРОН-2.0М, Fe *К*а проміння).

Розподіл елементів на поверхні електродного матеріалу на основі досліджених зразків зображено на рис. 3.37–3.39. Слід зазначити, що деякі ділянки були протравлені розчином електроліту – темні ділянки (більший вміст О).

Рис. 3.37. Розподіл елементів на поверхні зразка Hf₃₂Re₅₃Al₁₅ після електрохімічного гідрування.

Рис. 3.38. Розподіл елементів на поверхні зразка складу Hf₃₀Re₁₅Al₅₅ до (згори) і після (знизу) електрохімічного гідрування.

Рис. 3.39. Розподіл елементів на поверхні зразка Hf₃₀Re₁₀Al₆₀ до (згори) і після (знизу) електрохімічного гідрування.

Електродні матеріали розчинів на основі твердих $HfRe_{2-r}Al_r$ здатність електрохімічного демонструють до оборотного гідрування/дегідрування. За умов експерименту ми простежуємо збереження кристалічної структури твердих розчинів та часткову аморфізацію матеріалу (рис. 3.40). На рис. 3.41 зображено вибрані зарядні та розрядні криві (10 цикл після активації матеріалу) для прототипу хімічного джерела електричної енергії з електродом (анодом за процесів розряджання) на основі досліджених сплавів. Електрод на основі сплаву складу Hf₃₀Re₁₀Al₆₀ характеризується більшою питомою розрядною ємністю (62 мА·год/г) та вищою номінальною 1,35 Β, ніж електрод на розрядною напругою основі $Hf_{32}Re_{53}Al_{15}$ $(C_{\rm m} = 59 \text{ мА} \cdot \text{год/г}, E_{\text{роз}} = 1,24 \text{ B})$. Найбільша корозійна активність як і найкраща розрядна ємність ($C_{\rm m} = 68 \text{ мА-год/г}, E_{\rm pos} = 1,35 \text{ B}$) спостерігається у прототипа акумулятора з електродом на основі Hf₃₀Re₁₅Al₅₅.

Унаслідок гідрування простежується збільшення параметрів елементарної комірки фаз, зокрема для фази Лавеса в зразку Hf₃₀Re₁₅Al₅₅:

 $a = 5,2568(3) \rightarrow 5,2635(5), c = 8,5698(8) \rightarrow 8,5836(13)$ Å, яке свідчить про включення атомів гідрогену. Варто зазначити, що збільшення вмісту алюмінію викликає підвищення номінальної напруги. Для вибраних електродів склади одержаних гідридів описуються формулами: HfRe_{1,55}Al_{0,45}H_{1,03}, HfRe_{0,43}Al_{1,57}H_{0,75} i HfRe_{0,29}Al_{1,71}H_{0,67}.

Hf₃₂Re₅₃Al₁₅ (збільшення в 1070 разів)

Hf₃₂Re₅₃Al₁₅ (збільшення в 5330 разів)

Hf₃₀Re₁₅Al₅₅ (збільшення в 1070 разів)

Hf₃₀Re₁₅Al₅₅ (збільшення в 5330 разів)

Hf₃₀Re₁₀Al₆₀ (збільшення в 1070 разів)

Hf₃₀Re₁₀Al₆₀ (збільшення в 5330 разів)

Рис. 3.40. Зображення електродів після електрохімічного гідрування (SE-детектор зліва та BSE-детектор справа).

Рис. 3.41. Вибрані зарядні і розрядні криві для хімічного джерела електричної енергії з електродами на основі Hf₃₂Re₅₃Al₁₅ (чорна лінія), Hf₃₀Re₁₅Al₅₅ (синя лінія) і Hf₃₀Re₁₀Al₆₀ (червона лінія).

3.6.3. Електрохімічне гідрування фази HfRe_{1,78}Si_{0,22}

З метою порівняння впливу вмісту Al та Si на гідрогенсорбційні властивості фаз Лавеса провели електрохімічне гідрування зразка складу Hf₃₃Re₅₇Si₁₀. Дифрактограми цього зразка до і після гідрування зображені на рис. 3.42.

Розподіл елементів на поверхні електродного матеріалу на основі зразка Нf₃₃Re₅₇Si₁₀ до і після гідрування зображено на рис. 3.43.

На рис. 3.44 наведено зображення електрода після електрохімічного гідрування, отримані на скануючому електронному мікроскопі.

Рис. 3.42. Дифрактограма зразка Hf₃₃Re₅₇Si₁₀ до (синя) і після (червона) гідрування (STOE Stadi P, Cu *K*α₁ проміння).

Рис. 3.43. Розподіл елементів на поверхні зразка Hf₃₃Re₅₇Si₁₀ до (згори) і після (знизу) електрохімічного гідрування.

Рис. 3.44. Зображення електрода Hf₃₃Re₅₇Si₁₀ після електрохімічного гідрування (SE-детектор зліва та BSE-детектор справа) – збільшення в 2000 разів (*a*), 4000 разів (*б*), 6000 разів (*в*).

У результаті досліджень визначено, що електродний матеріал на основі фази HfRe_{1,78}Si_{0,22} демонструє здатність до оборотного електрохімічного гідрування/дегідрування. Його питома розрядна ємність становить 48 мА·год/г, а номінальна розрядна напруга – 1,12 В (рис. 3.45). При цьому простежується збереження кристалічної структури і незначне збільшення параметрів елементарної комірки фази HfRe_{1,78}Si_{0,22}: $a = 5,2253(2) \rightarrow 5,2261(5),$ $c = 8,5497(4) \rightarrow 8,5508(9)$ Å внаслідок включення атомів гідрогену, а склад одержаного гідриду можна описати формулою HfRe_{1,78}Si_{0,22}H_{0,95}. Під час експерименту відбувалась незначна аморфізація і часткове механічне руйнування анода у результаті виділення молекулярного водню.

Рис. 3.45. Зарядна і розрядна криві для 10 циклу хімічного джерела електричної енергії з електродом на основі Hf₃₃Re₅₇Si₁₀.
4. ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ

4.1. Порівняння систем Hf–Re–{Al, Si} між собою та зі спорідненими

Досліджені нами у повному концентраційному інтервалі за 1000 °C діаграми стану систем Hf–Re–Al і Hf–Re–Si відрізняються між собою як за фазовими рівновагами, так і за тернарними сполуками, що у них існують. У системі Hf–Re–Al за температури дослідження виявлено одну тернарну сполуку зі структурою типу Hf₅CuSn₃ (ПГ *P*6₃/*mcm*), тоді як у системі Hf–Re–Si за цих умов існує три сполуки зі структурами типів ZrCrSi₂ (ПГ *Pbam*), ZrNiAl (ПГ *P*-62*m*) і Hf₉Mo₄B (ПГ *P*6₃/*mmc*). Спільною рисою обох систем є утворення твердих розчинів заміщення на основі фаз зі структурою типу MgZn₂ (ПГ *P*6₃/*mmc*).

Якщо порівняти систему Hf–Re–Al з системами $T^{IV}-T^{VII}-M^{III}$, то можемо зауважити, що вони відрізняються між собою як за фазовими рівновагами, так і за кількістю та структурними типами тернарних сполук, що існують у цих системах. У більшості систем за участю бору сполук або не виявлено, або утворюється одна сполука. Системи з алюмінієм та індієм характеризуються наявністю однієї або двох сполук. Дещо більше сполук (2-4) формується у системах з галієм. Найбільше досліджень за різних температур проведено для системи Ti–Mn–Al.

Подібно до дослідженої нами системи Hf–Re–Al, ізоструктурні до типу MgZn₂, гексагональні фази з областями гомогенності значної протяжності також відомі в системах {Ti, Zr, Hf}–Mn–Al i {Zr, Hf}–Mn–Ga, тоді як у системі Hf–Re–B бінарні фази HfRe₂ і HfB₂ третього компонента не розчиняють. На відміну від системи Hf–Re–Al, у жодній із відомих систем не виявлено тернарної сполуки зі структурою типу Ti₅Ga₄ чи Hf₅CuSn₃. У табл. 4.1 узагальнено інформацію про сполуки, що існують у системах $T^{IV}-T^{VII}-M^{III}$.

Таблиця 4.1

Структурні типи спол	к у системах	T^{IV} -	$-T^{\text{VII}}$ -	$-M^{\rm III}$
----------------------	--------------	------------	---------------------	----------------

Структ Система	урний тип	Mg ₆ Cu ₁₆ Si ₇ , cF116, Fm-3m	ThMn ₁₂ , <i>t</i> 126, 14/mmm	Cu ₃ Au, cP4, Pm-3m	Ti ₆ Sn ₅ , hP22, P6 ₃ /mmc	Th ₆ Mn ₂₃ , <i>cF</i> 116, <i>Fm-3m</i>	Hf ₃ Mn ₂ Ga ₆ , <i>o</i> P22, <i>Pmmn</i>	Zr ₃ V ₂ Ga4, 0P72, Pnma	HfFeGa2, <i>oP</i> 48, <i>Pnma</i>	Hf ₅ CuSn ₃ , hP18, P6 ₃ /mmc
	Al									
Ti–Mn–	Ga									
	In									
	Al									
Zr–Mn–	Ga									
	In									
	Al									
Hf–Mn–	Ga									
	In									
	Al									
Ti–Re–	Ga									
	In									
	Al									
Zr–Re–	Ga									
	In									
Hf–Re–	Al									
	Ga									
	In									
Кількі представ	сть ників	1	1	3	1	1	2	2	1	1

Якщо порівняти досліджену нами систему Hf–Re–Si з подібними потрійними системами за участю *d*-металу IV групи (Ti, Zr, Hf) з Mn або Re i *p*-елементом IV групи (C, Si, Ge, Sn, Pb), то можна зауважити, що сполуки у них існують в областях з невисоким (не більше 33,3 ат. %) вмістом Mn або Re (табл. 4.2). Закономірно найбільша подібність є між системами з Si та Ge, яка виявляється в існуванні сполук зі структурами типів ZrNiAl (ПГ *P*-62*m*) і ZrCrSi₂ (ПГ *Pbam*).

Таблиця 4.2

Структурні типи сполук у системах	T^{IV} -	$-T^{\text{VII}}$	$-M^{\rm IV}$
структурні типи сполук у системах	1 -	-1 -	-1V I

Структ ний	ур- гип	Cr _{0,16} Mo _{0,38} Co _{0,46} , hR159, R-3	Nb ₂ Cr ₄ Si ₅ , <i>o</i> 144, <i>Ibam</i>	TiFeSi, <i>ol</i> 36, <i>Ima</i> 2	CuHf ₅ Sn ₃ , hP18, P6 ₃ /mcm	Mg ₂ Ni, <i>hP</i> 18, <i>P</i> 6 ₂ 22	ZrMnSi ₂ , oI48, Immm	CrSi ₂ , <i>hP</i> 9, <i>P</i> 6 ₂ 22	b ₃ (Cr _{0,5} Fe _{0,5}) ₂ Fe ₂ Si, <i>tP</i> 104, <i>P</i> 4 ₂ / <i>mbc</i>	Zr ₄ Co ₄ Ge ₇ , tI60, I4/mmm	TiNiSi, oP12, Pnma	MgFe ₆ Ge ₆ , hP13, P6/mmm	ZrNiAl, hP9, P-62m	ZrCrSi ₂ , oP48, Pbam	Hf ₉ Mo ₄ B, hP28, P6 ₃ /mmc
Система									Z						
Ti–Mn–	Si Ge Sn Pb														
Zr-Mn-	Si Ge Sn Pb														
Hf–Mn–	Si Ge Sn Pb														
Ti–Re–	Si Ge Sn Pb														
Zr–Re–	Si Ge Sn Pb														
Hf–Re–	Si Ge Sn Pb														
Кількі предста никії	сть ав- в	1	1	1	1	1	1	2	2	2	3	4	5	8	2

Сусідами Hf у періодичній таблиці є лантаноїди з одного боку і Ta – з другого. Якщо порівняти досліджені системи із системами La–Re–Al і La–Re–Si, то можна зауважити, що утворюються сполуки різної стехіометрії та кристалічної структури. У системах з лантаном існують сполуки: LaRe₄Al₈

(СТ СеМп₄Al₈, ПГ *I*4/*mmm*, a = 9,08, c = 5,19 Å [113]), LaRe₂Si₂ (СТ LaRe₂Si₂, ПГ *Imma*, a = 4,116, b = 4,206, c = 20,89 Å [114]) і La₂Re₃Si₅ (СТ U₂Mn₃Si₅, ПГ *P*4/*mnc*, a = 11,02, c = 5,8814 Å [115]), а також сполуки ~La₄Re₅Si₁₁ і ~La₄ReSi₅ з невідомою структурою [115].

У системах Ta–Re–{Al, Si} відомо про існування сполуки TaReSi (CT ZrNiAl, ПГ *P*-62*m*, a = 6,755, c = 3,450 Å [116]), яка є ізоструктурною до HfReSi.

4.2. Взаємозв'язки між структурами сполук систем Hf-Re-{Al, Si}

Кристалічні структури тернарних сполук системи Hf–Re–Si належать до класу структур з тригонально-призматичною координацією атомів найменшого розміру (клас 10) згідно з класифікацією П.І. Крип'якевича (рис. 4.1). Зокрема, у структурі сполуки HfReSi₂ навколо атомів Si можна виділити призми, у вершинах яких знаходяться атоми Hf i Re (Hf₄Re₂ i Hf₂Re₄, міжатомні віддалі δ (Hf-Si) = 2,69 Å, δ (Re-Si) = 2,63 Å). У структурі сполуки HfReSi навколо атомів Si є два типи призм: одні утворені атомами Hf, інші – атомами Re (міжатомні віддалі δ (Hf-Si) = 2,704 Å, δ (Re-Si) = 2,451 Å). Атоми Hf утворюють тригональні призми у структурі к-фази Hf_{10,26}Re_{2,74}Si (міжатомні віддалі δ (Hf-Si) = 2,663 Å). Варто зазначити, що віддалі від центрального атома до вершин цих призм є близькими до суми атомних радіусів відповідних елементів.

Рис. 4.1. Тригональні призми з атомів Hf і Re у структурах сполук: HfReSi₂ (*a*), HfReSi (δ), к-фази Hf_{10,26}Re_{2,74}Si (ϵ).

Сполуки $Hf_5Re_2Al_2$ і $Hf_{10,26}Re_{2,74}Si$ існують в областях високого вмісту гафнію. У їхніх структурах можна виділити октаедри навколо атомів Re, які у структурі $Hf_5Re_2Al_2$ формують атоми гафнію, а в структурі $Hf_{10,26}Re_{2,74}Si$ – атоми статистичної суміші Hf/Re (рис. 4.2).

Типовим поліедром дещо більших за розміром атомів – атомів Re є ікосаедр (чи його похідні), а для атомів Hf – пентагональна призма з додатковими атомами.

Рис. 4.2. Укладки октаедрів навколо атомів Re у структурах $Hf_5Re_2Al_2(a)$ і $Hf_{10,26}Re_{2,74}Si(b)$.

У структурах простих речовин гафнію, ренію, алюмінію і кремнію можна виокремити гексагональні канали – порожні у разі Hf, Re (рис. 4.3) і Si (рис. 4.4, δ) і заповнені атомами у разі Al (рис. 4.4, a). Кристалічні структури гафнію (СТ Mg, ПГ *P*6₃/*mmc*, a = 3,32, c = 5,46 Å [2]) і ренію (СТ Mg, ПГ *P*6₃/*mmc*, a = 2,752, c = 4,448 Å [2]) належать до гексагональної сингонії, тоді як алюмінію (СТ Cu, ПГ *Fm*-3*m*, a = 4,049 Å [2]) і кремнію (СТ С-алмаз, ПГ *Fd*-3*m*, a = 5,4312 Å [2]) – до кубічної сингонії. У структурі ренію віддалі між атомами, що формують канали, δ (Re-Re) = 2,752 Å, структурі гафнію – δ (Hf-Hf) = 3,320 Å, структурі алюмінію – δ (Al-Al) = 2,863 Å і структурі кремнію – δ (Si-Si) = 2,350 Å. Варто зазначити, що для Si відома також високотискова модифікація зі структурою типу магнію (ПГ *P*6₃/*mmc*, a = 2,4729, c = 4,1880 Å [2]).

Рис. 4.3. Гексагональні канали у структурі Hf i Re.

Рис. 4.4. Гексагональні канали у структурах Al (a) і Si (б).

Гексагональні канали у структурі сполуки $Hf_5Re_2Al_2$ формують усі сорти атомів (рис. 4.5), тоді як у структурі фази $HfRe_{0,88}Al_{1,12}$ лише атоми статистичної суміші Re/Al (рис. 4.6).

Рис. 4.5. Гексагональні канали з атомів Hf і статистичної суміші Re/Al у структурі Hf₅Re₂Al₂.

Рис. 4.6. Гексагональні канали з атомів статистичної суміші Re/Al у структурі HfRe_{0,88}Al_{1,12}.

Тернарні сполуки системи Hf–Re–Si мають шарувату структуру. Причому у кожному з шарів атомів можна виділити три-, тетра- і/або пентагональні кільця (рис. 4.7–4.9). Гексагональних сіток, як у структурі сполуки Hf₅Re₂Al₂, немає.

У структурі сполуки HfReSi₂ (СТ ZrCrSi₂, ПГ Pbam) можна виділити три типи шарів, утворених окремо атомами Hf i Si, окремо атомами Hf i Re, а також виключно атомами Si (рис. 4.7). У структурі сполуки HfReSi (CT ZrNiAl, ПГ *P*-62*m*) можна виокремити два типи шарів: один з яких утворений атомами Hf i Si, a інший – Re i Si (рис. 4.8). У структурі фази $Hf_{10.26}Re_{2.74}Si$ (CT Hf_9Mo_4B , різними ΠГ $P6_3/mmc$) також € шари, утворені сортами атомів (рис. 4.9). Проте, крім шарів з атомів Hf і Re, є шари, утворені атомами Hf, Re i Si. Таке розташування усіх сортів атомів в одному шарі також спостерігається у структурі сполуки $Hf_5Re_2Al_2$ (СТ Hf_5CuSn_3 , ПГ $P6_3/mcm$).

Рис. 4.7. Проекція кристалічної структури (*a*) і шари з атомів Hf і Si (б), Hf і Re (в) та Si (г) у структурі сполуки HfReSi₂.

Рис. 4.8. Проекція кристалічної структури (*a*) і шари з атомів Hf i Si (б) та Re i Si (*в*) у структурі сполуки HfReSi.

Рис. 4.9. Проекція кристалічної структури (*a*) і шари з атомів Hf і Re (б) та Hf, Re і Si (*в*) у структурі сполуки Hf_{10,26}Re_{2,74}Si.

4.3. Особливості електрохімічного гідрування фаз Лавеса

Тверді розчини на основі бінарних сполук HfRe₂ і HfAl₂ мають структуру типу MgZn₂ (ПГ *P*6₃/*mmc*). Відомо [117, 118], що в процесі гідрування атоми гідрогену в структурах цього типу займають тетраедричні пустоти (рис. 4.10), які за збільшенням спорідненості можна розмістити в ряд:

 $Hf_2M_2 (\Pi CT 6h_1, 6h_2, 12k_1, 24l) > HfM_3 (\Pi CT 12k_2, 4f) > M_4 (\Pi CT 4e).$

Алюміній, гафній і реній утворюють бінарні гідриди складів AlH₃ (СТ AlH₃, ПГ *R*-3*c*), HfH₂ (СТ CaF₂, ПГ *Fm*-3*m*) і ReH_{0,23} (СТ NiAs,

ПГ *P*6₃/*mmc*) [117]. Зокрема, AlH₃ характеризується утворенням ковалентних електрон-дефіцитних зв'язків Al–H–Al, а не втіленням атомів гідрогену в пустоти металевої гратки. Силіцій з гідрогеном утворює сполуки з ковалентно зв'язаними атомами.

Критеріями для прогнозування зайнятості пустот атомами гідрогену у структурах фаз Лавеса є мінімальні розмір пустоти r = 0,4 Å і віддалі ∂ (H-H) = 2,1 Å. Ймовірне розміщення атомів гідрогену у фазах зі структурою типу MgZn₂ нами виведено геометрично (див. рис. 4.10) на прикладі структури фази HfRe_{0,88}Al_{1,12} (ПГ *P*6₃/*mmc*, a = 5,2443(2), c = 8,5281(4) Å). Гіпотетичні координати для атомів гідрогену у цій структурі наведено в табл. 4.3, а міжатомні віддалі гідроген-метал з ймовірним включенням атомів гідрогену в пустоти Hf₂ M_2 – в табл. 4.4. При цьому віддалі між атомами гідрогену такі: ∂ (H1-H2) = 4,57 Å, ∂ (H1-H3) = 3,20 Å, ∂ (H1-H4) = 2,84 Å, ∂ (H2-H3) = 1,97 Å, ∂ (H2-H4) = 1,97 Å, ∂ (H3-H4) = 1,13 Å.

Рис. 4.10. Тетраедричні пустоти у структурі $HfRe_{0,88}Al_{1,12}$, які можуть займати атоми гідрогену (позначено *): Hf_2M_2 (*a*), HfM_3 i M_4 (*б*).

Кожна з пустот Hf_2M_2 може бути зайнята атомами H незалежно, або можливі такі комбінації пустот в двох одночасно зайнятих ПСТ: H1–H2, H1–H3, H1–H4. Одночасна повна зайнятість трьох чи чотирьох ПСТ є неможливою. Отож ймовірність включення атомів гідрогену в пустоти, що описують ПСТ 6*h* (0,5408 0,4592 1/4) є найвищою.

Таблиця 4.3

Координати атомів у структурі HfRe_{0,88}Al_{1,12} з ймовірним включенням атомів гідрогену в пустоти Hf₂ M_2 (див. рис. 4.10, *a*)

Атом	ПСТ	x	У	Ζ
Hf1	4 <i>f</i>	1/3	2/3	0,5629
<i>M</i> 1*	2 <i>a</i>	0	0	0
M2**	6 <i>h</i>	0,1700	0,3400	1/4
H1	6 <i>h</i>	0,5408	0,4592	1/4
H2	6 <i>h</i>	0,2092	0,4184	3/4
Н3	12 <i>k</i>	0,5426	0,4574	5/8
H4	24 <i>l</i>	0,3351	0,2926	0,56250

*M1 = 0,385Re + 0,615Al; **M2 = 0,459Re + 0,541Al

Таблиця 4.4

Міжатомні віддалі гідроген-метал у структурі $HfRe_{0,88}Al_{1,12}$ з ймовірним включенням атомів гідрогену в пустоти Hf_2M_2 (див. рис. 4.10, *a*)

Атом	ПСТ	<i>δ</i> (H-M), Å	<i>ð</i> (H-Hf), Å
H1	6 <i>h</i>	1,72	1,96
H2	6 <i>h</i>	1,75	1,95
Н3	12 <i>k</i>	1,71	1,96
H4	241	1,74	1,96

Характер досліджених нами заряд-розрядних кривих та отримані електрохімічні параметри для фаз зі структурою типу MgZn₂ добре корелюють з відповідними результатами, отриманими для серій твердих розчинів на основі GdFe₂ та GdMn₂ [118], що кристалізуються у структурі кубічної фази Лавеса.

ВИСНОВКИ

- Методами рентгенівської порошкової дифракції, скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії досліджено взаємодію компонентів у системах Hf–Re–Al i Hf–Re–Si у повних концентраційних інтервалах і вперше побудовано ізотермічні перерізи їхніх діаграм стану за 1000 °C.
- 2. У системі Hf–Re–Al існують два обмежені тверді розчини заміщення HfRe_{2-0,88(1)}Al_{0-1,12(1)} і HfAl_{2-1,74(1)}Re_{0-0,26(1)} зі структурою типу MgZn₂ (просторова група *P*6₃/*mmc*, *a* = 5,239–5,2443(2), *c* = 8,584–8,5281(4) Å і a = 5,250-5,2545(3), c = 8,680-8,5660(4) Å, відповідно) та тернарна сполука Hf₅Re_{2,02(3)}Al_{1,98(3)} зі структурою типу Hf₅CuSn₃ (*P*6₃/*mcm*, *a* = 8,0738(6), c = 5,7012(11) Å). Тернарні фази характеризуються невпорядкованим розміщенням атомів Al/Re.
- 3. У системі Hf–Re–Si існують три тернарні сполуки: HfReSi₂ (структура типу ZrCrSi₂, *Pbam*, a = 9,1271(3), b = 10,0356(4), c = 8,0708(3) Å), HfReSi (ZrNiAl, *P*-62*m*; a = 6,9240(2), c = 3,3890(1) Å) і Hf_{10,26(3)}Re_{2,74(3)}Si (Hf₉Mo₄B, *P*6₃/*mmc*, a = 8,5835(12), c = 8,7135(13) Å). Перші дві тернарні фази характеризуються впорядкованим розміщенням атомів, а в третій фазі спостерігається часткове невпорядкування Hf/Re. Розчинність Si у бінарних сполуках Hf₅Re₂₄ і HfRe₂ становить 11 і 16 ат. %, відповідно.
- Структури тернарних силіцидів належать до класу структур з тригональнопризматичною координацією атомів найменшого розміру (Si). Типовим поліедром атомів Re є ікосаедр, а атомів Hf – пентагональна призма з додатковими атомами.
- Твердість зразків систем Hf–Re–Al і Hf–Re–Si зростає зі збільшенням вмісту ренію в них. Силіциди, у порівнянні з алюмінідами, характеризуються більшими значеннями мікротвердості (від 783 HV для Hf₅Re₂Al₂ до 1675 HV для Hf₅Re₂₁Al₃).

- 6. Функції розподілу електронної густини сполук HfRe₂ і HfAl₂ та змодельованої впорядкованої фази Hf(Re_{0,5}Al_{0,5})₂ вказують на металічний тип електропровідності. Вирішальний вплив на характер температурних залежностей коефіцієнта термо-е.р.с. та електроопору фаз зі структурою типу MgZn₂ має природа *p*-елемента (Al чи Si).
- Електродні матеріали на основі зразків системи Hf–Re–Al піддаються оборотному електрохімічному гідруванню/дегідруванню. Прототип акумулятора з електродом на основі сплаву Hf₃₀Re₁₅Al₅₅ характеризується питомою розрядною ємністю 68 мА·год/г і номінальною розрядною напругою 1,35 В.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- ASM Alloy Phase Diagram Database (Release 2006/2022); Villars, P.; Okamoto, H.; Savysyuk, I.; Cenzual. K., Eds. ASM International: Materials Park (Ohio), 2022.
- Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD), Release 2022/23; Villars, P.; Cenzual. K., Eds. ASM International: Materials Park (Ohio), 2023.
- Pötzschke, M.; Schubert, K. Zum Aufbau einiger zu T⁴–B³ homologer und quasihomologer Systeme. II. Die Systeme Titan–Aluminium, Zirkonium– Aluminium, Hafnium–Aluminium, Molybdän–Aluminium und einige ternäre Systeme. Z. Metallkd. 1962, 53, 548–560.
- Maas, J.; Bastin, G. F.; Van Loo, F. J. J.; Metselaar, R. The texture in diffusiongrown layers of trialuminides *MeAl*₃ (*Me* = Ti, V, Ta, Nb, Zr, Hf) and VNi₃. *Z. Metallkd.* 1983, 74, 294–299.
- Suprunenko, P. A.; Markiv, V. Y.; Tsvetkova, T. M. Magnetic and X-ray diffraction study of Laves phases in the ternary systems (Ti, Zr, Hf)–Cr–Al. *Izv. Akad. Nauk SSSR, Met.* 1984, 207–210.
- Schuster, J. C.; Nowotny, H. Investigations of the ternary systems (Zr, Hf, Nb, Ta)–Al–C and studies on complex carbides. *Z. Metallkd.* 1980, *71*, 341–346.
- Nowotny, H.; Schob, O.; Benesovsky, F. Die Kristallstruktur von Zr₂Al und Hf₂Al. *Monatsh. Chem.* 1961, *92*, 1300–1303.
- Savitskii, E. M.; Tylkina, M. A.; Tsyganova, I. A.; Gladyshevskii, E. I.; Mulyava, M. P. Equilibrium diagram of the Hafnium-Rhenium system. *J. Inorg. Chem.* 1962, *7*, 831–832.
- 9. Taylor, A.; Kagle, B. J.; Doyle, N. J. The constitutional diagram of the Rhenium-Hafnium system. *J. Less Common. Met.* **1963**, *5*, 26–40.

- Gladyshevskii, E. I.; Tylkina, M. A.; Savitskii, E. M.; X-ray and microscopic examination of the alloys of Hf with Re. *Sov. Phys. Crystallogr.* 1961, *5*, 836–840.
- Cenzual, K.; Parthé, E.; Waterstrat, R. M. Zr₂₁Re₂₅, a new rhombohedral structure type containing 12 Å-thick infinite MgZn₂ (Laves)-type columns. *Acta Crystallogr. C* 1986, *42*, 261–266.
- Compton, V. B.; Matthias, B. T. Laves phase compounds of rare earths and of hafnium with noble metals. *Acta Crystallogr.* 1959, *12*, 651–654.
- Savitskii, E. M.; Tylkina, M. A.; Khamidov, O. K. Investigation of the solid solubility of transition metals in rhenium and some properties of their alloys. *Izv. Akad. Nauk SSSR, Met.* 1969, 200–208.
- Shurin, A. K.; Todorov, N. Phase equilibria in alloys of hafnium with silicon *Metallofizika* 1971, 33, 100–102.
- 15. Tokaychuk, I.; Tokaychuk, Ya.; Gladyshevskii, R. The ternary system Hf-Ga-Si at 600 °C. *Chem. Met. Alloys* **2012**, *5*, 84–89.
- Muts, N. M.; Tokaychuk, Ya. O.; Boyko, M. O.; Demchenko, P. Yu.; Gladyshevskii, R. E. Representatives of the structure type Sc₂Re₃Si₄ in *R*-{Ti, Zr, Hf}-Si systems (*R* – rare-earth metal). *Dopov. Nats. Akad. Nauk Ukr.* 2014, *12*, 128–133.
- Muts, N. M.; Manyako, M. B.; Lasocha, W.; Gladyshevskii, R. E. The Tb-Hf-Si system at 873 K. *Chem. Met. Alloys* 2009, *2*, 187–193.
- Weitzer, F.; Rogl, P.; Noel, H. The ternary system: hafnium-silicon-uranium. J. Alloys Compd. 2005, 387, 246–250.
- 19. Schuster, J. C. X-ray investigation of phase relation and crystal structures in the binary system Re–Al. *J. Less-Common. Met.* **1984**, *98*, 215–220.
- Крип'якевич, П. І.; Кузьма, Ю. Б. Кристалічна структура сполуки ReAl₁₂.
 Вісник Львів. унів., Сер. хім. 1963, 6, 46–49.
- Grin, Yu.; Schuster, J. C. Crystal structure of rhenium aluminum (1:4.01), Re₈Al_{33-x} (x = 0.93), the low-temperature phase of ReAl₄. *Z. Kristallogr. – New Cryst. Struct.* 2007, 222, 85–86.

- Schuster, J. C.; Parthé, E. Triclinic ReAl₄ (approximate composition), a periodic domain structure variant of the monoclinic WAl₄ type. *Acta Crystallogr. C* 1987, 43, 620–623.
- Peets, D. C.; Cheng, E.; Ying, T.; Kriener, M.; Shen, X.; Li, S.; Feng, D. Type-I superconductivity in Al₆Re. *Phys. Rev. B* 2019, *99*, 144519.
- 24. Obrowski, W. B2-phasen von aluminium mit T-metallen der VII und VIII gruppe des Periodischen systems. *Naturwissenschaften* **1960**, *47*, 14.
- 25. Savitskii, E. M.; Tylkina, M. A.; Povarova, K. B. Equilibrium diagram of the aluminum-rhenium system. *J. Inorg. Chem.* **1961**, *6*, 1003–1005.
- 26. Niemann, S.; Jeitschko, W. The crystal structures of Re₂Al, Re₄Al₁₁ and ReAl₆. *Z. Naturforsch., B: J. Chem. Sci.* 1993, 48, 1767–1773.
- 27. Krypyakevych, P. I.; Kuz'ma, Yu. B. Compounds of rhenium and aluminum and crystal structures of some of them. *Sov. Phys. Crystallogr.* **1962**, *7*, 240.
- 28. Knapton, A. G. The system rhenium–silicon. *In Plansee Proc. Pap. Plansee Semin. "De Re Met.", 3rd.* 1959, pp 412–418.
- Jorda, J. L.; Ishikawa, M.; Muller, J. Phase relations and superconductivity in the binary Re–Si system. J. Less-Common Met. 1982, 85, 27–35.
- Siegrist, T.; Greedan, J. E.; Garrett, J. D.; Wenhe, G.; Stager, C. V. Crystal structure and superconductivity in Re₂Si. *J. Less-Common Met.* 1991, *171*, 171–177.
- 31. Федина, В.; Гладишевськмй, Р. Уточнення кристалічної структури сполуки ReSi. *Вісник Львів. унів., Сер. хім.* **2014**, *55*, 87–92.
- Gottlieb, U.; Lambert Andron, B.; Nava, F.; Affronte, M.; Laborde, O.; Rouault, A.; Madar, R. Structural and electronic transport properties of ReSi_{2-x} single crystals. *J. Appl. Phys.* **1995**, *78*, 3902–3907.
- Harada, S.; Hoshikawa, H.; Kuwabara, K.; Tanaka, K.; Okunishi, E.; Inui, H. Crystal structure refinement of ReSi_{1.75} with an ordered arrangement of silicon vacancies. *Philos. Mag.* 2011, *91*, 3108–3127.

- Verkhoglyadova, T. S.; Vivchar, O. I.; Gladyshevskii, E. I. Solubility of the disilicides of the transition metals in MoSi₂ and WSi₂. *Powder Metall. Met. Ceram.* 1966, *5*, 316–319.
- Кузьма, Ю. Б.; Пайташ, Т. П.; Байдала, С. І. Фазові рівноваги в системах титан-ванадій-бор і титан-марганець-бор. Вісн. Львів. унів., Сер. хім. 1969, 11, 18–20.
- Voroshylov, Yu. V.; Kuz'ma, Yu. B. Phase equilibria in the ternary systems zirconium–vanadium–boron, zirconium–niobium–boron, zirconium– manganese–boron. *Powder Metall. Met. Ceram.* 1967, *6*, 466–469.
- 37. Kuz'ma, Yu. B. The systems Ti–Co–B and Ti–Re–B. *Neorg. Mater.* **1971**, *7*, 514–516.
- Kuz'ma, Yu. B.; Lakh, V. I.; Stadnyk, B. I.; Voroshylov, Yu. V. Phase equilibria in the systems Zr–Re–B and W–Re–B. *Powder Metall. Met. Ceram.* 1968, *6*, 47–53.
- Rogl, P.; Nowotny, H. Neue κ-(Kappa-) Phasen. Monatsh. Chem. 1973, 104, 1497–1504.
- Kuz'ma, Yu. B.; Lakh, V. I.; Stadnyk, B. I.; Kovalyk, D. A. The systems hafnium-tungsten-boron, hafnium-rhenium-boron and niobium-rheniumboron. *Powder Metall. Met. Ceram.* 1970, *12*, 59–62.
- Raghavan, V. Al–Mn–Ti (Aluminum–Manganese–Titanium). J. Phase Equilib. Diffus. 2011, 32 (5), 465–467.
- Huang, X.; Tan, J.; Guo, Y.; Xu, G.; Cui Y. Experimental diffusion research on BCC Ti–Mn Binary and Ti–Al–Mn ternary alloys. *J. Phase Equilib. Diffus.* 2018, 39, 702–713.
- Huang, X. M.; Cai, G. M.; Zhang, J.; Zheng, F.; Liu, H. S.; Jin Z. P. Phase relation and transition in the Ti–Al–Mn system. J. Alloys Compd. 2021, 861, 158578.
- Mabuchi, H.; Hirukawa, K. I.; Nakayama, Y. Formation of structural L1₂ compounds in TiAl₃-base alloys containing Mn. *Scr. Metall.* 1989, 23, 1761–1766.

- 45. Yan, X. L.; Chen, X. Q.; Grytsiv, A. V.; Rogl, P.; Podloucky, R.; Schmidt, H. G.; Giester, G.; Ding, X.Y. On the ternary Laves phases Ti(Mn_{1-x}Al_x)₂ with MgZn₂-type. Intermetallics 2008, *16*, 16–26.
- 46. Markiv, V. Ya.; Skripka, A. I. Examination of the phase equilibria in Ti–Mn–Ga and Zr–Mn–Ga alloys. *Russ. Metall.* **1981**, *4*, 196–199.
- 47. Belyavina, N. N.; Markiv, V. Ya. Isothermal section of the phase diagram of Hf–Mn–Ga system at 500 °C. *Visn. Kyiv. Univ., Ser. Phys.* **1980**, *21*, 17–20.
- Gulay, L. D.; Zaremba, V. I. Investigation of the interaction between the components in the Zr–Mn–In system at 870 K. J. Alloys Compd. 2002, 347, 184–187.
- 49. Гулай, Л.; Заремба, В.; Каличак, Я. Кристалічна структура сполуки ZrMn_{0,7}In_{2,3}. *Вісник Львів. унів., Сер. хім.* **2000**, *39*, 101–103.
- 50. Марків, В. Я.; Бурнашова, В. В. Нові потрійні сполуки в системах {Sc, Ti, Zr, Hf}-{V, Cr, Mn, Fe, Co, Ni, Cu}-{Al, Ga}. Допов. Акад. Наук Укр. PCP, Cep. A 1969, 463–464.
- Dwight, A. E. Alloying behavior of zirconium, hafnium and the actinides in several series of isostructural compounds. J. Less-Common Met. 1974, 34, 279–284.
- 52. Марків, В. Я.; Бєлявіна, Н. М. Кристалічна структура сполуки Hf₃Mn₂Ga₆ і її аналогів. *Допов. Акад. Наук Укр. РСР, Сер. Б* **1987**, *6*, 44–47.
- 53. Марків, В. Я.; Бєлявіна, Н. М. Кристалічна структура сполуки HfGa, її аналогів і нових представників структурного типу Hf₃Cr₂Si₄. Допов. Акад. Наук Укр. PCP, Сер. Б **1986**, 4, 43–47.
- 54. Марків, В. Я.; Бєлявіна, Н. М. Кристалічна структура сполуки HfFeGa₂ і її аналогів. Допов. Акад. Наук Укр. РСР, Сер. А **1987**, 6, 70–73.
- Gorshkova, L. V.; Voroshylov, Yu. V.; Fedorov, T. F. Investigation of the ternary system zirconium–rhenium–carbon. *Powder Metall. Met. Ceram.* 1969, 2, 82–85.

- Fedorov, T. F.; Gladyshevskii, E. I.; Gorshkova, L. V. About the phase equilibria in the ternary system Hf–Re–C. *Izv. Akad. Nauk SSSR, Met.* 1966, 6, 134–136.
- Bardos, D. I.; Malik, R. K.; Spiegel, F. X.; Beck, P. A. Beta-Manganese phase in ternary system of transition elements with silicon, germanium or tin. *Trans. Metall. Soc. AIME* 1966, 236 (1), 40–48.
- Sun, Y.; Zeng, W. J.; Hu, K.; Liu, H. S.; Cai, G. M.; Jin, Z. P. Phase equilibria in the Ge–Mn–Ti ternary system at 973 K, 1073 K and 1173 K. *CALPHAD: Comput. Coupling Phase Diagrams Thermochem.* 2017, 56, 139–149.
- 59. Лисенко, Л. А. Фазові рівноваги і кристалічні структури сполук в системах {Ti, Zr, Hf}-{Cr, Mn, Fe, Co}-Si. Автореф. дис. ... канд. хім. наук, Львів. унів., Львів, 1975, 20 с.
- Tkachuk, A. V.; Akselrud, L. G.; Stadnyk, Yu. V.; Bodak, O. I. Isothermal section of the Ti–Mn–Sn system and crystal structure of the TiMnSn₄ compound. *J. Alloys Compd.* 2000, *312*, 284–287.
- Romaka, L.; Tkachuk, A.; Stadnyk, Yu.; Romaka, V. V.; Horyn, A.; Korzh, R.; Peculiarity of component interaction in Zr–Mn–{Sn, Sb} ternary systems. *J. Alloys Compd.* 2014, 611, 401–409.
- 62. Bardos, D. I.; Gupta, K. P.; Beck, P. A. New ternary *R*-phases with silicon. *Nature (London, U. K.).* **1961**, *192*, 744a.
- 63. Yan, X. L.; Chen, X. Q.; Grytsiv, A. V.; Witusiewicz, V. T.; Rogl, P.; Podloucky, R.; Giester, G. On the ternary Laves phases (Sc,Ti)₂M₃Si (M = Cr, Mn, Fe, Co, Ni) with MgZn₂-type. J. Alloys Compd. 2007, 429, 10–18.
- Jeitschko, W. Ternary phases with TiFeSi and ordered Fe₂P type structures. *Metall. Trans.* 1970, *1*, 2963–2965.
- 65. Steinmetz, J.; Roques, B. Une famille de siliciures ternaires isotypes de V₆Si₅: $(T,T)_6$ Si₅ ou T = V, Cr, Mn et T = Ti, Nb, Ta. J. Less-Common Met. **1977**, 52, 247–258.

- 66. Steinmetz, J.; Venturini, G.; Roques, B.; Engel, N.; Chabot, B.; Parthé, E. TiMnSi₂ and TiFeSi₂ with new orthorhombic-type structure. *Acta Crystallogr. B.* 1982, *38*, 2103–2108.
- 67. Schubert, K.; Meissner, H. G.; Raman, A.; Rossteutscher, W. Einige strukturdaten metallischer phasen (9). *Naturwissenschaften*. **1964**, *51*, 287.
- Yarmolyuk, Ya. P.; Sikiritsa, M.; Akselrud, L. G.; Lysenko, L. A.; Gladyshevskii, E. I. The crystal structure of ZrCrSi₂. Sov. Phys. Crystallogr. 1982, 27, 652–653.
- Johnson, V. Ternary transition metal germanides and arsenides. *Mater. Res. Bull.* 1973, *8*, 1067–1072.
- Schuster, J. C.; Naka, M.; Shibayanagi, T. Crystal structure of CuSn₃Ti₅ and related phases. *J. Alloys Compd.* 2000, 305, L1–L3.
- 71. Blazina, Z.; Trojko, R. On Friauf-Laves phases in the $Zr_{1-x}Al_xT_2$, $Zr_{1-x}Si_xT_2$ and $Zr_{1-x}Ti_xT_2$ (T = Mn, Fe, Co) systems. *J. Less-Common Met.* **1987**, *133*, 277–286.
- 72. Bazela, W.; Szytula, A.; Leciejewicz, J. Magnetic properties of ZrMnSi, ZrMnGe, and HfMnSi intermetallics. *Phys. Status Solidi A* **1986**, *94*, 207–211.
- Tkachuk, A. V.; Crerar, S. J.; Mar, A. Synthesis and structure of ternary transition-metal silicides Zr₃Mn₄Si₆ and Hf₃Mn₄Si₆. *J. Solid State Chem.* 2004, *177*, 3939–3943.
- 74. Lysenko, L. A.; Yarmolyuk, Ya. P. New representatives of the structure types Zr₄Co₄Ge₇, Nb₂Cr₄Si₅ and CeAl₂Ga₂ in systems of two transition metals with silicon and germanium. Coll. Abstr. II Conference on crystal chemistry of intermetallic compounds, Lviv, Ukraine, October 3–6, 1974; p. 22.
- Venturini, G.; Steinmetz, J.; Roques, B. Relations entre les types structuraux de TiMn(Fe)Si₂ et ZrFeSi₂ et détermination d'une nouvelle structure apparentée: Le type ZrMnSi₂. *J. Less-Common Met.* **1982**, *87*, 21–30.
- Mazet, T.; Welter, R.; Venturini, G.; Ressouche, E.; Malaman, B. Neutron diffraction study of the ZrMn₆Ge₆, LuMn₆Ge₆ and ScMn₆Ge₆ compounds. *Solid State Commun.* 1999, *110*, 407–412.

- Ihou Mouko, H.; Mazet, T.; Isnard, O.; Malaman, B. Magnetic properties and electronic structure of the new HfFe₆Ge₆-type HfMn₆Ge₆ compound. *J. Alloys Compd.* 2006, 426, 26–30.
- Ярмолюк, Я. П.; Гладишевський, Є. І. Нові тернарні сполуки еквіатомного складу в системах двох перехідних металів і силіцію або германію. Допов. Акад. Наук Укр. РСР, Сер. Б 1974, 11, 1030–1032.
- Mazet, T.; Welter, R.; Malaman, B. A study of the new HfFe₆Ge₆-type ZrMn₆Sn₆ and HfMn₆Sn₆ compounds by magnetization and neutron diffraction measurements. *J. Alloys Compd.* **1999**, *284*, 54–59.
- Zhao, J.; Mao, S. Y. Synthesis, structure and bonding features of HfReSi. *Xiamen Daxue Xuebao, Ziran Kexueban* 1997, 36, 875–878.
- Mao, S. Y.; Zhao, J. Synthesis, structure and bonding features of HfReSi₂. *Xiamen Daxue Xuebao, Ziran Kexueban* 1998, *37*, 384–389.
- Harsta, A.; Wennebo, E. New κ-Phases in the systems Hf–W–(S, As, Se) and Hf–Re– (Si, P, S, Ge, As, Se, Fe, Co, Ni). *Acta Chem. Scand., Ser. A* 1982, *36*, 547–548.
- Крип'якевич, П. І.; Марків, В. Я.; Мельник, Е. В. Кристалічна структура сполук ZrNiAl, ZrCuGa і їх аналогів. Допов. Акад. Наук Укр. РСР, Сер. А 1967, 750–753.
- Gladyshevskii, R. E. *Methods to Determine Crystal Structures*. *Textbook*, Publishing Centre of Ivan Franko National University of Lviv: Lviv, 2015; 135 p.
- 85. Kraus, W.; Nolze, G. POWDER CELL for Windows. Berlin, 1999.
- 86. STOE WinXPOW (Version 1.2). STOE & CIE GmbH: Darmstadt, 2001.
- 87. Rodríguez-Carvajal, J. Recent Developments of the Program FULLPROF. Commission on Powder Diffraction (IUCr). Newsletter **2001**, 26, 12–19.
- Akselrud, L.; Grin, Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014, 4, 803.
- 89. ДСТУ ISO 6507-1:2007 Матеріали металеві. Визначення твердості за Вікерсом. Частина 1. Метод випробування (ISO 6507-1:2005, IDT).

- The Elk code An all-electron full-potential linearized augmented-plane wave (LAPW) code. http://elk.sourceforge.io.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 1996, 77 (18) 3865-8.
- Monkhorst, H. J.; Pack, J. K. Special points for Brillouin-zone integrations. *Phys. Rev. B.* 1976, 13, 5188–5192.
- 93. Okhotnikov, K.; Charpentier, T.; Cadars, S. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. *J. Cheminf.* **2016**, *8*, 17.
- 94. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.
- 95. Гореленко, Ю.К.; Гладишевський, Р.Є.; Стадник, Ю.В.; Ромака, Л.П.; Горинь, А.М. Методичні вказівки до виконання лабораторних робіт із спецкурсів "Електричні та магнітні властивості неорганічних матеріалів" і "Сучасні неорганічні матеріали" для студентів хімічного факультету, Видавничий центр Львівського національного університету імені Івана Франка: Львів, 2008; 30 с.
- 96. Schubert, K.; Meissner, H. G.; Pötzschke, M.; Rossteutscher, W.; Stolz, E. Einige strukturdaten metallischer phasen (7). *Naturwissenschaften* 1962, 49, 57.
- 97. Rieger, W.; Nowotny, H.; Benesovsky, F. Phasen mit oktaedrischen Bau elementen des Übergangsmetalls. *Monatsh. Chem.* **1965**, *96*, 232–241.
- Зінько, Л.; Мацелко, О.; Ничипорук, Г.; Гладишевський, Р. Взаємодія компонентів у системі Hf–Re–Al. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання 2021", Львів, Україна, 31 травня 2 червня 2021; с. H25.
- 99. Zinko, L.; Nychyporuk, G.; Matselko, O.; Gladyshevskii, R. Ternary system Hf-Re-Al at 1000 °C. *Phys. Chem. Solid State* **2023**, *24* (2), 361–366.

- 100. Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevskii, R. The Hf–Re–Si system. Coll. Abstr. 23 International Conference on Solid Compounds of Transition Elements, Bordeaux, France, June 14–17, 2022; p. 126.
- 101. Zinko, L.; Matselko, O.; Kordan, V.; Nychyporuk, G.; Gladyshevskii, R. Interaction of the components in the system Hf–Re–Si. *Chem. Met. Alloys.* 2019, *12* (3/4), 88–92.
- 102. Зінько, Л.; Ничипорук, Г.; Гладишевський, Р. Система Hf-Re-Si при 1000 °С. Питання хімії та хімічної технології **2023**, *3* (3), 72–76.
- 103. Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. Crystal structure of the Hf₅Re_{1.36}Al_{2.64} compound. Coll. Abstr. 22 International Conference on Solid Compounds of Transition Elements, Wroclaw, Poland, April 12–15, 2021; p. 139.
- 104. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991; 251 p.
- 105. Lander, G. H.; Brown, P. J. Electron density distribution in the alloy Mn₅Si₃. *Philos. Mag.* 1967, *16*, 521–542.
- 106. Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. A new hexagonal phase in the Hf–Al–Re system. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 103.
- 107. Зінько, Л. Кристалічна структура та електрохімічне гідрування фаз HfRe_{2-x}Al_x. *Chem. Met. Alloys* **2021**, *14* (3/4), 64–68.
- 108. Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevkii, R. Crystal structure and electrochemical hydrogenation of the HfRe_{1.78}Si_{0.22} phase. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 46.
- 109. Sathyakumari, V. S.; Sankar, S.; Mahalakshmi, K. Ab-initio studies of thermal and superconducting properties of HfX_2 alloys (X = Tc, Re, and Os). *Mater*. *Sci.-Pol.* **2014**, *32* (3), 324–330.

- 110. Belošević-Čavor, J.; Koteski, V.; Cekić, B.; Umićević A. Ab-initio calculation of electronic structure and electric field gradients in HfAl₂ and ZrAl₂ Laves phases. *Comput. Mater. Sci.* **2007**, *41*, 164–167.
- 111. Зінько, Л.; Ничипорук, Г.; Горинь, Гладишевський, P. A.; Електротранспортні властивості фази $HfRe_{0.4}Al_{1.6}$. Матеріали III "Актуальні Міжнародної наукової конференції проблеми хімії. матеріалознавства та екології", Луцьк, Україна, 1–3 червня 2023; с. 35.
- 112. Зінько, Л.; Кордан, В.; Ничипорук, Г.;. Гладишевський, Р. Електрохімічне гідрування сплаву Hf_{0,64}Re_{0,29}Al_{0,07}. Зб. наук. праць XIX Наукова конференція "Львівські хімічні читання – 2023", Львів, Україна, 29–31 травня 2023; с. H22.
- 113. Rykhal', R. M.; Zarechnyuk, O. S. New representatives of the structure types CeMn₄Al₈. Coll. Abstr. II Conference on crystal chemistry of intermetallic compounds, Lviv, Ukraine, October 3–6, 1974; pp. 40-41.
- 114. Pecharskii, V. K.; Bodak, O. I.; Gladyshevskii, E. I. Crystal structure of the compound LaRe₂Si₂. *Sov. Phys. Crystallogr.* **1977**, 22, 359–361.
- 115. Bodak, O. I.; Pecharskii, V. K.; Kalychak, Ya. M.; Kharchenko, O. I.; Mokra, I. R.; Muratova, L. O.; Beryezyuk, D. A.; Shevchuk, M. M. Some ternary systems with rare-earth metals. *Phase Equilib. Met. Alloys* **1981**, 57–63.
- 116. Яртись, В. А.; Рябов, О. Б.; Лотоцький, М. В. Матеріалознавство та структурна хімія інтерметалічних гідридів; СПОЛОМ: Львів, 2006; 288 с.
- 117. Westlake, D. G. Site occupancies and stoichiometries in hydrides of intermetallic compounds: geometric considerations. J. Less-Comm. Met. 1983, 90, 251–273.
- 118. Chorna, N. O.; Kordan, V. M.; Mykhailevych, A. M.; Zelinska, O. Ya.; Zelinskiy, A. V.; Kluziak, K.; Serkiz, R. Ya.; Pavlyuk, V. V. Electrochemical hydrogenation, lithiation and sodiation of the $GdFe_{2-x}M_x$ and $GdMn_{2-x}M_x$ intermetallics. Vopr. Khim. Khim. Tekhnol. **2021**, *2*, 139–149.

ДОДАТОК А

Фотографії поверхонь шліфів та результати рентгенівського спектрального аналізу зразків системи Hf–Re–Al (1000 °C) (електронний мікроскоп Tescan Vega 3 LMU)

Рис. А1. Фотографії поверхонь шліфів і хімічний склад фаз сплавів: $a - 13 \text{ Hf}_{10,0}\text{Re}_{10,0}\text{Al}_{80,0}$ (загальний склад – $\text{Hf}_{10}\text{Re}_{15}\text{Al}_{75}$; сіра фаза – $\text{Hf}_{24}\text{Re}_{0}\text{Al}_{76}$; темна фаза – $\text{Hf}_{1}\text{Re}_{20}\text{Al}_{79}$; біла фаза – сплав Вуда),

 δ – 16 Hf_{55,0}Re_{15,0}Al_{30,0} (загальний склад – Hf₅₇Re₁₄Al₂₉; сіра фаза – Hf₅₁Re₂₆Al₂₃; темна фаза – Hf₅₉Re₅Al₃₆),

в – 18 Hf_{20,0}Re_{25,0}Al_{55,0} (загальний склад – Hf₁₉Re₂₉Al₅₂; сіра фаза – Hf₃₅Re₃₆Al₂₉; темна фаза – Hf₂Re₂₆Al₇₂),

c - 21 Hf_{32,0}Re_{53,0}Al_{15,0} (загальний склад – Hf₃₈Re₅₇Al₅; cipa фаза – Hf₃₅Re₆₀Al₅; темна фаза – Hf₅₀Re₄₀Al₁₀),

 ∂ – 26 Hf_{55,5}Re_{11,1}Al_{33,3} (загальний склад – Hf₅₄Re₁₀Al₃₆; світла фаза – Hf₅₁Re₂₄Al₂₅; сіра фаза – Hf₅₉Re₂Al₃₉; темна фаза – Hf₄₃Re₇Al₄₉),

 $e - 27 \text{ Hf}_{50,0}\text{Re}_{10,0}\text{Al}_{40,0}$ (загальний склад – $\text{Hf}_{56}\text{Re}_6\text{Al}_{38}$; світла фаза – $\text{Hf}_{60}\text{Re}_{18}\text{Al}_{21}$; темна фаза – $\text{Hf}_{57}\text{Re}_3\text{Al}_{40}$).

Рис. А2. Фотографії поверхонь шліфів і хімічний склад фаз сплавів:

a - 28 Hf_{50,0}Re_{15,0}Al_{35,0} (загальний склад – Hf₅₀Re₁₅Al₃₅; сіра фаза – Hf₄₈Re₂₆Al₂₆; темна фаза – Hf₅₅Re₂Al₄₃),

 δ – 30 Hf_{55,0}Re_{5,0}Al_{40,0} (загальний склад – Hf₅₃Re₃Al₄₄; сіра фаза – Hf₅₆Re₂Al₄₂; темна фаза – Hf₅₁Re₂Al₄₇),

e - 33 Hf_{65,0}Re_{5,0}Al_{30,0} (загальний склад – Hf₆₃Re₄Al₃₃; світла фаза – Hf₈₄Re₀Al₁₆; темна фаза – Hf₆₁Re₂Al₃₇),

г – 34 Hf_{5,0}Re_{55,0}Al_{40,0} (загальний склад – Hf₄Re₄₄Al₅₁; світла фаза – Hf₅Re₆₈Al₂₅; темна фаза – Hf₀Re₂₇Al₇₃),

 ∂ – 36 Hf_{30,0}Re_{20,0}Al_{50,0} (загальний склад – Hf₃₂Re₂₁Al₄₇; світла фаза – Hf₃₂Re₃₁Al₃₇; темна фаза – Hf₃₆Re₇Al₅₇),

e - 44 Hf_{61,5}Al_{38,5} (загальний склад – Hf_{0,60}Al_{0,40}; світла фаза – Hf_{0,67}Al_{0,33}; сіра фаза – Hf_{0,57}Al_{0,43}).

додаток б

Фотографії поверхонь шліфів та результати рентгенівського спектрального аналізу зразків системи Hf–Re–Si (1000 °C) (електронний мікроскоп Tescan Vega 3 LMU)

Рис. Б1. Фотографії поверхонь шліфів і хімічний склад фаз сплавів:

 $a - 14 \text{ Hf}_{80,0}\text{Re}_{10,0}\text{Si}_{10,0}$ (загальний склад – $\text{Hf}_{77}\text{Re}_{11}\text{Si}_{12}$; світла фаза – $\text{Hf}_{82}\text{Re}_{12}\text{Si}_{0}$; сіра фаза – $\text{Hf}_{70}\text{Re}_{15}\text{Si}_{15}$; темна фаза – $\text{Hf}_{67}\text{Re}_{0}\text{Si}_{33}$),

 δ – 16 Hf_{10,0}Re_{10,0}Si_{80,0} (загальний склад – Hf₇Re₅Si₈₈; світла фаза – Hf₂₈Re₀Si₇₂; темна фаза – Hf₀Re₁Si₉₉),

 $e - 17 \text{ Hf}_{19,3}\text{Re}_{9,5}\text{Si}_{71,2}$ (загальний склад – $\text{Hf}_{14}\text{Re}_{10}\text{Si}_{76}$; світла фаза – $\text{Hf}_{3}\text{Re}_{32}\text{Si}_{65}$; сіра фаза – $\text{Hf}_{25}\text{Re}_{1}\text{Si}_{74}$; темна фаза – $\text{Hf}_{2}\text{Re}_{1}\text{Si}_{0,97}$),

 $c - 21 \text{ Hf}_{10,0}\text{Re}_{26,4}\text{Si}_{63,6}$ (загальний склад – $\text{Hf}_{12}\text{Re}_{22}\text{Si}_{66}$; світла фаза – $\text{Hf}_{0}\text{Re}_{36}\text{Si}_{64}$; сіра фаза – $\text{Hf}_{15}\text{Re}_{17}\text{Si}_{68}$; темна фаза – $\text{Hf}_{28}\text{Re}_{0}\text{Si}_{72}$),

 $\partial - 22 \text{ Hf}_{10,0} \text{Re}_{36,4} \text{Si}_{53,6}$ (загальний склад – $\text{Hf}_{10} \text{Re}_{32} \text{Si}_{58}$; світла фаза – $\text{Hf}_{32} \text{Re}_{25} \text{Si}_{43}$; сіра фаза – $\text{Hf}_{24} \text{Re}_{21} \text{Si}_{55}$; темна фаза – $\text{Hf}_2 \text{Re}_{35} \text{Si}_{63}$),

e - 23 Hf_{5,0}Re_{61,7}Si_{33,3} (загальний склад – Hf₅Re₅₉Si₃₆; світла фаза – Hf₄Re₆₀Si₃₆; сіра фаза – Hf₇Re₆₁Si₃₂; темна фаза – Hf₄Re₅₅Si₄₁).

Рис. Б2. Фотографії поверхонь шліфів і хімічний склад фаз сплавів:

a - 24 Hf_{5,0}Re_{66,7}Si_{28,3} (загальний склад – Hf₆Re₆₇Si₂₇; світла фаза – Hf₃Re₆₄Si₃₃; сіра фаза – Hf₁₂Re₆₈Si₂₀; темна фаза – Hf₉Re₄₄Si₄₇),

 $\delta - 26 \text{ Hf}_{10,0}\text{Re}_{70,0}\text{Si}_{20,0}$ (загальний склад – Hf₉Re₆₄Si₂₇; світла фаза – Hf₁₂Re₆₈Si₂₀; темна фаза – Hf₁Re₃₅Si₆₄),

e - 31 Hf_{55,0}Re_{5,0}Si_{40,0} (загальний склад – Hf₅₂Re₄Si₄₄; світла фаза – Hf₅₁Re₅Si₄₄; темна фаза – Hf₃₈Re₁₇Si₄₅),

 $c - 32 \text{ Hf}_{60,0}\text{Re}_{5,0}\text{Si}_{35,0}$ (загальний склад – $\text{Hf}_{63,5}\text{Re}_3\text{Si}_{33,5}$; світла фаза – $\text{Hf}_{96}\text{Re}_3\text{Si}_1$; темна фаза – $\text{Hf}_{56}\text{Re}_2\text{Si}_{43}$),

 ∂ – 33 Hf_{65,0}Re_{5,0}Si_{30,0} (загальний склад – Hf₅₄Re₄Si₄₃; світла фаза – Hf₅₄Re₂₂Si₂₄; сіра фаза – Hf₅₆Re₀Si₄₄; темна фаза – Hf₉₉Re₀Si₁),

 $e - 35 \text{ Hf}_{5,0}\text{Re}_{80,0}\text{Si}_{15,0}$ (загальний склад – $\text{Hf}_{4,5}\text{Re}_{80,5}\text{Si}_{15}$; світла фаза – $\text{Hf}_{7}\text{Re}_{78}\text{Si}_{15}$; темна фаза – $\text{Hf}_{8}\text{Re}_{61}\text{Si}_{30}$).

ДОДАТОК В

Список публікацій та відомості про апробацію основних результатів дослідження здобувача за темою дисертаційної роботи

Наукові праці, в яких опубліковані основні наукові результати дисертації:

- Zinko, L.; Matselko, O.; Kordan, V.; Nychyporuk, G.; Gladyshevskii, R. Interaction of the components in the system Hf–Re–Si. *Chem. Met. Alloys* 2019, 12 (3/4), 88–92. doi.org/10.30970/cma12.0398. Особистий внесок здобувача: аналіз літературних відомостей, синтез зразків, одержання масивів рентгенівських дифракційних даних, виготовлення шліфів, здійснення фазового аналізу і підготовка статті до друку.
- Зінько, Л. Кристалічна структура та електрохімічне гідрування фаз HfRe_{2-x}Al_x. *Chem. Met. Alloys* 2021, *14* (3/4), 64–68. doi.org/10.30970/cma14.0428.
- 3. Зінько, Л.; Ничипорук, Г.; Гладишевський, Р. Система Hf–Re–Si при 1000 °C. Питання хімії та хімічної технології 2023, 3 (3), 72–76. doi.org/10.32434/0321-4095-2023-148-3-72-76. Особистий внесок здобувача: аналіз літературних відомостей, проведення експериментальних досліджень (синтез зразків, одержання масивів дифракційних даних, виготовлення шліфів), побудова ізотермічного перерізу діаграми стану і підготовка статті до друку.
- 4. Zinko, L.; Nychyporuk, G.; Matselko, O.; Gladyshevskii, R. Ternary system Hf–Re–Al at 1000 °C. Phys. Chem. Solid State 2023, 24 (2), 361–366. doi.org/10.15330/pcss.24.2.361-366. Особистий внесок здобувача: аналіз літературних відомостей, проведення експериментальних досліджень (синтез зразків, одержання масивів дифракційних даних, виготовлення иліфів), інтерпретація одержаних результатів і підготовка статті до друку.

Апробація основних результатів дослідження на конференціях, симпозіумах, семінарах тощо:

- Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. A new hexagonal phase in the Hf–Al–Re system. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 103 (очна участь, стендова доповідь).
- Zinko, L.; Matselko, O.; Nychyporuk, G.; Gladyshevskii, R. Crystal structure of the Hf₅Re_{1.36}Al_{2.64} compound. Coll. Abstr. 22 International Conference on Solid Compounds of Transition Elements, Wroclaw, Poland, April 12–15, 2021; p. 139 (дистанційна участь, стендова доповідь).
- Зінько, Л.; Мацелко, О.; Ничипорук, Г.; Гладишевський, Р. Взаємодія компонентів у системі Hf–Re–Al. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання – 2021", Львів, Україна, 31 травня – 2 червня 2021; с. H25 (очна участь, стендова доповідь).
- Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevskii, R. The Hf–Re–Si system. Coll. Abstr. 23 International Conference on Solid Compounds of Transition Elements, Bordeaux, France, June 14–17, 2022; p. 126 (очна участь, стендова доповідь).
- Зінько, Л.; Кордан, В.; Ничипорук, Г.;. Гладишевський, Р. Електрохімічне гідрування сплаву Hf_{0,64}Re_{0,29}Al_{0,07}. Зб. наук. праць XIX Наукова конференція "Львівські хімічні читання – 2023", Львів, Україна, 29–31 травня 2023; с. Н22 (очна участь, стендова доповідь).
- 6. Зінько, Л.; Ничипорук, Г.: Горинь, A.; Гладишевський, Р. Електротранспортні властивості фази $HfRe_{0.4}Al_{1.6}$. Матеріали III конференції "Актуальні Міжнародної наукової проблеми XIMIÏ, матеріалознавства та екології", Луцьк, Україна, 1-3 червня 2023; с. 35 (дистанційна участь, стендова доповідь).

- Zinko, L.; Nychyporuk, G.; Kordan, V.; Gladyshevkii, R. Crystal structure and electrochemical hydrogenation of the HfRe_{1.78}Si_{0.22} phase. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 46 (очна участь, стендова доповідь).
- 8. **Зінько, Л. А.**; Мацелко, О. В.; Гладишевський, Р. Є. Нова тернарна гексагональна фаза у системі Hf–Al–Re. Звітна наукова конференція співробітників Університету за 2020 рік (*очна участь, усна доповідь*).
- Зінько, Л. А.; Мацелко, О. В.; Ничипорук, Г. П.; Гладишевський, Р. Є. Взаємодія компонентів у системах Hf–Re–Si та Hf–Re–Al. Звітна наукова конференція співробітників Університету за 2021 рік (*очна участь, усна доповідь*).