Львівський національний університет імені Івана Франка Міністерства освіти і науки України

Кваліфікаційна наукова праця на правах рукопису

МАРИСКЕВИЧ ДАНИЛО ТАРАСОВИЧ

УДК 546+548.736.4

ДИСЕРТАЦІЯ СИСТЕМИ {Zr,Hf}–Al–*M* (*M* = Si, Ge, Sn, Sb): ФАЗОВІ РІВНОВАГИ ТА КРИСТАЛІЧНА СТРУКТУРА СПОЛУК

10 Природничі науки 102 Хімія

Подається на здобуття наукового ступеня доктора філософії. Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело.

_____ Д. Т. Марискевич

Науковий керівник: Гладишевський Роман Євгенович, академік НАН України, доктор хімічних наук, професор

АНОТАЦІЯ

Марискевич Д. Т. Системи {Zr,Hf}–Al–M (M = Si, Ge, Sn, Sb): фазові рівноваги та кристалічна структура сполук. – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 102 "Хімія" галузі знань 10 "Природничі науки". – Львівський національний університет імені Івана Франка, Львів, 2023.

Дисертаційна робота присвячена експериментальному дослідженню хімічної взаємодії компонентів у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, встановленню фазових рівноваг та побудові ізотермічних перерізів діаграм стану при 600°С, синтезу та визначенню кристалічної структури сполук, які в них утворюються, і виведенню їхніх кристалохімічних закономірностей.

Дослідженню передував огляд та аналіз літературних відомостей про компоненти вибраних систем, діаграми стану подвійних систем $\{Zr,Hf\}$ – $\{Al,Si,Ge,Sn,Sb\}$ i $Al-\{Si,Ge,Sn,Sb\}$ та потрійних систем $\{Ti,Zr,Hf\}$ –Al- $\{Si,Ge,Sn,Pb,Sb,Bi\}$, $\{Ti,Zr,Hf\}$ –Ga- $\{Si,Ge,Sn,Sb\}$ i $\{Nb,Ta\}$ –Al- $\{Si,Ge,Sn,Sb\}$, a також про кристалічні структури сполук, що в них утворюються. Зроблено відповідні висновки і висунуто припущення про характер взаємодії компонентів у системах {Zr,Hf}–Al-{Si,Ge,Sn,Sb}.

Методом електродугового сплавляння з подальшим гомогенізуючим відпалом при 600°С синтезовано 61 двокомпонентний і 357 трикомпонентних сплавів систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}. Вихідними компонентами слугували компактні прості речовини високої чистоти. Фазовий склад зразків визначено за допомогою рентгенівської дифракції і спектроскопії. Масиви рентгенівських дифракційних даних отримано на порошкових дифрактометрах ДРОН-2.0М (проміння Fe Ka) та STOE Stadi P (проміння Cu Ka₁), а локальний рентгеноспектральний аналіз проведено на растровому електронному мікроскопі РЕММА-102-02, оснащеному енергодисперсійним рентгенівським спектрометром ЕДАР, та на скануючому електронному мікроскопі Tescan Vega 3 LMU, оснащеному двома детекторами (вторинних електронів і зворотно розсіяних електронів) та енергодисперсійним рентгенівським аналізатором Oxford Instruments Aztec ONE з детектором X-Max^N20. На основі результатів фазового аналізу, методом триангуляції побудовано ізотермічні перерізи діаграм стану потрійних систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°C. Кристалічну структуру тернарних фаз визначено рентгенівськими дифракційними методами порошку (дифрактометри ДРОН-2.0M і STOE Stadi P) і монокристалу (дифрактометр Rigaku AFC7, детектор Mercury CCD, проміння Мо $K\alpha$).

За результатами експериментальних досліджень встановлено фазові рівноваги та вперше побудовано ізотермічні перерізи діаграм стану потрійних систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°С у повних концентраційних інтервалах. Підтверджено існування при 600°С 56 бінарних сполук, встановлено існування 29 тернарних сполук, 22 з яких – відкрито вперше. Для всіх синтезованих тернарних сполук визначено параметри кристалічних структур.

У системах {Zr,Hf}–Al–Si (600°С) встановлено утворення твердих розчинів заміщення різної протяжності на основі бінарних силіцидів. Розчинність алюмінію (в ат.%) становить у: Zr₂Si – 9, Zr₅Si₃ – 15, Zr₃Si₂ – 7,5, Zr₅Si₄ – 6, ZrSi – 9,5, ZrSi₂ – 12, Hf₅Si₃ – 13,5, Hf₃Si₂ – 7, Hf₅Si₄ – 5,5, HfSi – 2,5 i HfSi₂ – 8. Між ізоструктурними бінарними сполуками Hf₂Al i Hf₂Si (структурний тип CuAl₂, символ Пірсона *tl*12, просторова група *I*4/*mcm*) утворюється неперервний ряд твердих розчинів Hf₂Al₁₋₀Si₀₋₁ (a = 6,775(3)-6,553(2), c = 5,3969(2)-5,186(2) Å). Інші бінарні сполуки не розчиняють третій компонент. У системах {Zr,Hf}–Al–Si встановлено існування п'яти тернарних алюмосиліцидів постійних складів: ZrAl_{2,55}Si_{0,45} (TiAl₃, *tl*8, *I*4/*mmm*, a = 3,91422(15), c = 8,9753(3) Å), ZrAl_{0,33}Si_{1,67} (ZrAl_{0,23}Ge_{1,77}, *tl*32, *I*4₁/*amd*, a = 3,7095(2), c = 29,345(3) Å), Zr₅Al_{2,44}Si_{0,56} (Nb₅SiSn₂, *tl*32, *I*4/*mcm*, a = 11,0454(4), c = 5,3942(2) Å), HfAl_{2,55}Si_{0,45} (TiAl₃, *tI*8, *I*4/*mmm*, a = 3,89413(14), c = 8,9386(3) Å) та Hf₅Al_{2,56}Si_{0,44} (Mn₅Si₃, *hP*16, *P*6₃/*mcm*, a = 8,0321(3), c = 5,6247(2) Å).

У системах {Zr,Hf}–Al–Ge (600°C) встановлено утворення твердих розчинів заміщення на основі бінарних германідів $ZrGe_2$, Zr_5Ge_3 , $HfGe_2$, Hf_3Ge_2 та Hf_5Ge_3 , які

розчиняють 4, 10, 9, 2,5 та 5 ат.% Al, відповідно. Між ізоструктурними бінарними сполуками Hf₂Al i Hf₂Ge (CuAl₂, tI12, I4/mcm) утворюється неперервний ряд твердих розчинів Hf₂Al₁₋₀Ge₀₋₁ (a = 6,775(3)-6,596(2), c = 5,3969(2)-5,291(2) Å). Інші бінарні сполуки не розчиняють третій компонент. {Zr,Hf}–Al–Ge У встановлено існування дев'яти системах тернарних складів: алюмогерманідів постійних ZrAl_{2,52}Ge_{0,48} (TiAl₃, *tI*8, I4/mmm, a = 3,92395(11), c = 9,0476(4) Å), ZrAl_{0,23}Ge_{1,77} (ZrAl_{0,23}Ge_{1,77}, tI32, I4₁/amd, a = 3,8013(2), c = 29,893(3) Å), $Zr_{11}Al_{3,34}Ge_{6,66}$ ($Zr_{11}Al_{3,34}Ge_{6,66}, t/84, 14/mmm$, a = 10,3679(7), c = 14,8529(11) Å), Zr₅AlGe₃ (Hf₅CuSn₃, hP18, P6₃/mcm, a = 8,104(3), c = 5,654(2) Å), $Zr_5Al_{2,70}Ge_{0.30}$ (Nb₅SiSn₂, *tI*32, *I*4/*mcm*, a = 11,0145(7), c = 5,3921(4) Å), HfAl_{2.40}Ge_{0.60} (TiAl₃, *tI*8, *I*4/*mmm*, a = 3,9021(2), c = 8,9549(8) Å), $Hf_{11}Al_{3,50}Ge_{6,50}$ (Zr₁₁Al_{3,34}Ge_{63,66}, *tI*84, *I*4/*mmm*, a = 10,1764(8), c = 14,1729(13) Å), Hf₅AlGe₃ (Hf₅CuSn₃, *hP*18, *P*6₃/*mcm*, a = 8,0641(3), c = 5,5874(2) Å) ta Hf₅Al_{2 56}Si_{0.44} $(Mn_5Si_3, hP16, P6_3/mcm, a = 8,0880(3), c = 5,6511(2) Å).$

У системах {Zr,Hf}–Al–Sn (600°С) встановлено утворення твердих розчинів заміщення на основі бінарних станідів Zr₅Sn₄ та Zr₅Sn₃ – 11,1 та 2,5 ат.% Al, відповідно, і твердий розчин включення на основі Hf₅Sn₃ протяжністю до 11,1 ат.% Al. Інші бінарні сполуки не розчиняють третій компонент. У системах {Zr,Hf}–Al–Sn встановлено існування при 600°С шести тернарних алюмостанідів постійного та змінного складів: ZrAl_{2,68}Sn_{0,32} (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3,98855(18), c = 9,0848(4) Å), Zr₅Al_{2,71}Sn_{0,29} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11,0530(9), c = 5,4071(5) Å), Zr₅Al_{1,68-0,40}Sn_{1,32-2,60} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11,1005(9)-11,1829(12), c = 5,4537(5)-5,5449(6) Å), HfAl_{2,64}Sn_{0,36} (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3,95450(2), c = 8,94451(12) Å), Hf₅Al_{2,70}Sn_{0,30} (Mn₅Si₃, *hP*16, *P*6₃/*mcm*, *a* = 8,0910(4), c = 5,6515(4) Å) та Hf₅Al_{1,33-0,78}Sn_{1,67-2,22} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 10,9627(8)-11,0291(9), c = 5,4138(4)-5,4913(5) Å).

У системах {Zr,Hf}–Al–Sb (600°С) встановлено утворення твердих розчинів заміщення різної протяжності на основі бінарних антимонідів Zr_5Sb_4 , Zr_5Sb_3 та Hf₅Sb₃ протяжністю 11,1, 2,5 та 3 ат.% Al, відповідно. Інші бінарні сполуки не розчиняють третій компонент. У системах {Zr,Hf}–Al–Sb встановлено існування

при 600°С дев'яти тернарних алюмоантимонідів постійного та змінного складів: ZrAl_{2,65}Sb_{0,35} (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3,9142(2), *c* = 8,9753(4) Å), Zr₂AlSb₃ (Zr₂CuSb₃, *tP*6, *P*-4*m*2, *a* = 3,9826(2), *c* = 8,7144(5) Å), Zr₅Al_{2,55}Sb_{0,45} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11,0120(9), *c* = 5,3913(5) Å), Zr₅Al_{1,55-0,65}Sb_{1,45-2,35} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 10,9810(9)-11,0731(12), *c* = 5,4153(5)-5,4482(6) Å), HfAl_{2,67}Sb_{0,33} (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3,94191(9), *c* = 8,9078(2) Å), Hf₂AlSb₃ (Zr₂CuSb₃, *tP*6, *P*-4*m*2, *a* = 3,9021(2), *c* = 8,6510(5) Å), Hf₅AlSb₃ (Hf₅CuSn₃, *hP*18, *P*6₃/*mcm*, *a* = 8,0934(5), *c* = 5,6560(5) Å) Ta Hf₅Al_{1,52-0,74}Sb_{1,48-2,26} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 10,8908(8)-10,9344(9), *c* = 5,5114(4)-5,5403(5) Å).

На основі результатів експериментальних досліджень встановлено особливості взаємодії компонентів у системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb}, здійснено порівняльний аналіз систем між собою та зі спорідненими потрійними системами та встановлено кристалохімічні закономірності тернарних сполук. Спостерігається спорідненість систем з тим самим d-елементом (Zr чи Hf), а також попарна спорідненість систем з Zr та Hf і однакового *p*-елемента 14 (Si, Ge, Sn) чи 15 (Sb) групи періодичної системи. Найменшою кількістю тернарних сполук (2) характеризується система Hf-Al-Si, а найбільшою (по 5) - системи Zr-Al-Ge i Hf–Al–Sb. При переході від систем з Si до систем з Ge спостерігається ускладнення характеру взаємодії компонентів, що проявляється у збільшенні загальної кількості тернарних сполук від 5 у системах {Zr,Hf}-Al-Si до 9 у системах {Zr,Hf}-Al-Ge. При переході до систем зі Sn кількість тернарних сполук зменшується до 6, а заміна Sn на Sb приводить до збільшення кількості тернарних інтерметалідів до 9. Кристалічні структури тернарних сполук систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} належать до семи структурних типів; для більшості з них простежується тенденція до впорядкування атомів різних хімічних елементів.

Структурні типи, що реалізуються у системах $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ на ізоконцентратах 25 ат.% Zr і Hf при 600°C, належать до кубічних найщільніших упаковок атомів, які є впорядкованими похідними структурного типу Cu (*cF*4, *Fm*-3*m*) і побудовані з щільноупакованих шарів атомів виключно у кубічній

укладці – ZrAl₃ (t/16, 14/mmm), TiAl₃ (t/8, 14/mmm) і UCuAl₂ (t/8, 14/mmm). Розрахована компактність структур (співвідношення V_{атомів}/V_{комірки}) для бінарних і тернарних сполук є більшою, ніж компактність структури Al. Найбільше значення компактності (79,5 %) має тернарна сполука ZrAl_{2.65}Sb_{0.35}. Новий структурний тип $ZrAl_{0.23}Ge_{1.77}$ (*tI32*, *I4*₁/*amd*) характеризується частковим впорядкуванням атомів Al і Ge, а також позиційним невпорядкуванням атомів Ge, яке було змодельовано розщепленням однієї кристалографічної позиції. Він належить до серії лінійних неоднорідних структур, побудованих зрощенням фрагментів структурних типів AlB₂ та CaF₂. Новий структурний тип $Zr_{11}Al_{3,34}Ge_{6,66}$ (*t*/84, *I*4/*mmm*) є тетрарним варіантом структурного типу $Ho_{11}Ge_{10}$, i характеризується частковим впорядкуванням атомів Al і Ge. Структура побудована укладкою тригональних призм і тетрагональних антипризм, центрованими атомами *р*-елементів. Кристалічні структури фаз з великим вмістом Zr чи Hf побудовані з колон многогранників: октаедрів у структурах $Hf_5(Al_{1-x}M_x)_3$ (M = Si, Ge, Sn, Sb; структурний тип Mn₅Si₃, hP16, $P6_3/mcm$) i T_5AlM_3 (T = Zr, Hf; M = Ge, Sn, Sb; структурний тип Hf₅CuSn₃ hP18, P6₃/mcm) та тетрагональних антипризм i тетраедрів у структурах $Zr_5(Al_{1-x}M_x)_3$ (M = Si, Ge, Sn, Sb) і Hf₅(Al_{1-x}M_x)_3 (M = Sn, Sb) (структурний тип Nb₅SiSn₂, *tI*32, *I*4/*mcm*). Збільшення вмісту Zr чи Hf у сполуках вмісту *р*-елементів) змінює координаційне (зменшення оточення атомів *р*-елементів: від кубооктаедричного (25 ат.% Zr(Hf)) тригонально-ДО призматичного і тетраедричного (33,3 ат.% Zr(Hf)), тригонально-призматичного і тетрагонально-антипризматичного (52,4 ат.% Zr(Hf)), тригонально-призматичного і октаедричного (55,5 ат.% Zr(Hf)) і тетрагонально-антипризматичного та ікосаедричного (62,5 ат.% Zr(Hf)). Залежно від співвідношення компонентів у Zr,Hf-Al-Si,Ge,Sn,Sbсистемах можна цілеспрямовано змінювати координаційне оточення атомів і вимірність будови структури від тривимірної (кубічні найщільніші упаковки) до одновимірної (структури з колонами многогранників). Керування анізотропією структури має вплив на оптимізацію фізичних властивостей.

6

Наукова новизна одержаних результатів полягає в тому, що вперше визначено фазові рівноваги та побудовано ізотермічні перерізи діаграм стану систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} при 600°С у повних концентраційних інтервалах; встановлено області гомогенності тернарних сполук і межі твердих розчинів на основі бінарних сполук; знайдено два неперервні ряди твердих розчинів між бінарними сполуками, 21 обмежений твердий розчин заміщення і один твердий розчин включення на основі бінарних інтерметалідів. Встановлено існування при 600°С 29 тернарних сполук (5 силіцидів, 9 германідів, 6 станідів і 9 антимонідів), 22 з яких – нові. Для всіх тернарних сполук визначено параметри кристалічних структур; рентгенівськими дифракційними методами монокристалу та порошку розшифровано два нові структурні типи – $ZrAl_{0.23}Ge_{1.77}$ і $Zr_{11}Al_{3.34}Ge_{6.66}$. На основі результатів експериментальних досліджень встановлено особливості взаємодії компонентів у потрійних системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb}, здійснено їхній порівняльний аналіз між собою та із спорідненими; виведено кристалохімічні закономірності тернарних сполук; встановлено взаємозв'язок між хімічним складом і кристалічною структурою тернарних фаз у досліджених системах.

Ключові слова: цирконій, гафній, алюміній, силіцій, ґерманій, олово, стибій, рентгенівська дифракція, рентгенівська спектроскопія, фазові рівноваги, діаграма стану, твердий розчин, інтерметалічна сполука, кристалічна структура, координаційний поліедр.

SUMMARY

Maryskevych D. T. Systems $\{Zr,Hf\}$ -Al-*M* (*M* = Si, Ge, Sn, Sb): phase equilibria and crystal structures of the compounds. – Qualifying scientific work on manuscript rights.

Thesis for the scientific degree of Doctor of Philosophy in the specialty 102 Chemistry of the field of knowledge 10 Natural Sciences. – Ivan Franko National University of Lviv, Lviv, 2023.

The dissertation is devoted to an experimental investigation of the chemical interaction of the components in the ternary systems {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, establishment of the phase equilibria and construction of the isothermal sections at 600°C of the phase diagrams, synthesis and determination of the crystal structures of the compounds that form in these systems. Based on the observations, crystal-chemical regularities are derived.

Before undertaking the experimental work, literature data on related chemical systems, phase diagrams of the binary systems $\{Zr,Hf\}-\{Al,Si,Ge,Sn,Sb\}$ and Al- $\{Si,Ge,Sn,Sb\}$, and the ternary systems $\{Ti, Zr,Hf\}-Al-\{Si,Ge,Sn,Pb,Sb,Bi\}$, $\{Ti,Zr,Hf\}-Ga-\{Si,Ge,Sn,Sb\}$, and $\{Nb,Ta\}-Al-\{Si,Ge,Sn,Sb\}$, as well as on the crystal structures of compounds forming in these systems, were reviewed and analyzed. Conclusions were drawn, and assumptions about the interaction of the components in the $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ systems were made.

61 two-component and 357 three-component alloys of the systems {Zr,Hf}–Al– {Si,Ge,Sn,Sb} were synthesized by arc melting, followed by homogenizing annealing at 600°C. Compact elemental substances of high purity served as starting components. The phase compositions of the samples were determined using X-ray diffraction and spectroscopy. X-ray diffraction patterns were obtained on powder diffractometers DRON-2.0M (radiation Fe $K\alpha$) and STOE Stadi P (radiation Cu $K\alpha_1$), and local X-ray spectral analysis was performed on a raster electron microscope REMMA-102-02 equipped with an energy-dispersive X-ray spectrometer EDAR, and on a scanning electron microscope Tescan Vega 3 LMU equipped with two detectors (secondary electrons and back-scattered electrons), and an energy-dispersive X-ray analyzer Oxford Instruments Aztec ONE with the detector X-Max^N20. Based on the results of the phase analysis, the isothermal sections of the phase diagrams of the ternary systems $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ at 600°C were constructed by the triangulation method. The crystal structures of the ternary phases were determined by X-ray powder (diffractometers DRON-2.0M and STOE Stadi P) and single-crystal (diffractometer Rigaku AFC7, detector Mercury CCD, radiation Mo $K\alpha$) diffraction.

Based on the experimental investigations, the phase equilibria were established, and the isothermal sections of the phase diagrams of the ternary systems {Zr,Hf}-Al-{Si,Ge,Sn,Sb} at 600°C were constructed in the whole concentration region, for the first time. The existence of 56 binary compounds at 600°C was confirmed, and 29 ternary compounds were observed, 22 of which were discovered for the first time. Crystallographic parameters were determined for all of the ternary compounds.

In the systems {Zr,Hf}–Al–Si (600°C) the formation of solid solutions of the substitution type based on the binary silicides was established, with the following extensions (at.% Al): $Zr_2Si = 9$, $Zr_5Si_3 = 15$, $Zr_3Si_2 = 7.5$, $Zr_5Si_4 = 6$, ZrSi = 9.5, $ZrSi_2 = 12$, $Hf_5Si_3 = 13.5$, $Hf_3Si_2 = 7$, $Hf_5Si_4 = 5.5$, HfSi = 2.5, and $HfSi_2 = 8$. A continuous solid solution $Hf_2Al_{1-0}Si_{0-1}$ (a = 6.775(3)-6.553(2), c = 5.3969(2)-5.186(2) Å) forms between the isostructural binary compounds Hf_2Al and Hf_2Si (structure type CuAl₂, Pearson symbol tI12, space group I4/mcm). The other binary compounds do not dissolve significant amounts of the third component. The existence of five ternary alumosilicides with approximately constant compositions was established in the systems { $Zr,Hf}-Al-Si$: $ZrAl_{2.55}Si_{0.45}$ (TiAl₃, tI8, I4/mmm, a = 3.91422(15), c = 8.9753(3) Å), $ZrAl_{0.33}Si_{1.67}$ ($ZrAl_{0.23}Ge_{1.77}$, tI32, $I4_1/amd$, a = 3.7095(2), c = 29.345(3) Å), $Zr_5Al_{2.44}Si_{0.56}$ (Nb₅SiSn₂, tI32, I4/mcm, a = 11.0454(4), c = 5.3942(2) Å), HfAl_{2.55}Si_{0.45} (TiAl₃, tI8, I4/mmm, a = 3.89413(14), c = 8.9386(3) Å), and Hf₅Al_{2.56}Si_{0.44} (Mn₅Si₃, hP16, $P6_3/mcm$, a = 8.0321(3), c = 5.6247(2) Å).

In the systems {Zr,Hf}–Al–Ge (600°C) the formation of solid solutions of the substitution type based on the binary germanides $ZrGe_2$, Zr_5Ge_3 , HfGe₂, Hf₃Ge₂, and

Hf₅Ge₃, which dissolve 4, 10, 9, 2.5, and 5 at.% Al, respectively, was established and a continuous solid solution Hf₂Al₁₋₀Ge₀₋₁ (6.775(3)-6.596(2), c = 5.3969(2)-5.291(2) Å) was observed between the isostructural binary compounds Hf₂Al and Hf₂Ge (CuAl₂, *tI*12, 4/*mcm*). The other binary compounds do not dissolve the third component. The existence of nine ternary alumogermanides with point compositions was established in the systems {Zr,Hf}-Al-Ge: ZrAl_{2.52}Ge_{0.48} (TiAl₃, *tI*8, *I*4/*mmm*, *a* = 3.92395(11), *c* = 9.0476(4) Å), ZrAl_{0.23}Ge_{1.77} (ZrAl_{0.23}Ge_{1.77}, *tI*32, *I*4₁/*amd*, *a* = 3.8013(2), *c* = 29.893(3) Å), Zr₁₁Al_{3.34}Ge_{6.66} (Zr₁₁Al_{3.34}Ge_{6.66}, *tI*84, *I*4/*mmm*, *a* = 10.3679(7), *c* = 14.8529(11) Å), Zr₅AlGe₃ (Hf₅CuSn₃, *hP*18, *P*6₃/*mcm*, *a* = 8.104(3), *c* = 5.654(2) Å), Zr₅Al_{2.70}Ge_{0.30} (Nb₅SiSn₂, *tI*32, *I*4/*mcm*, *a* = 11.0145(7), *c* = 5.3921(4) Å), HfAl_{2.40}Ge_{0.60} (TiAl₃, *tI*8, *I*4/*mmm*, *a* = 10.1764(8), *c* = 14.1729(13) Å), Hf₅AlGe₃ (Hf₅CuSn₃, *hP*18, *P*6₃/*mcm*, *a* = 8.0641(3), *c* = 5.6511(2) Å).

In the systems {Zr,Hf}-Al-Sn (600°C) the formation of solid solutions of the substitution type based on the binary stannides Zr_5Sn_4 and $Zr_5Sn_3 - 11.1$ and 2.5 at.% Al, respectively, and a solid solution of the inclusion type based on Hf₅Sn₃ (up to 11.1 at.% Al) was established. Six ternary alumogermanides with constant or variable compositions were observed at 600°C: $ZrAl_{2.68}Sn_{0.32}$ (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3.98855(18), c = 9.0848(4) Å), $Zr_5Al_{2.71}Sn_{0.29}$ (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11.0530(9), c = 5.4071(5) Å), $Zr_5Al_{1.68-0.40}Sn_{1.32-2.60}$ (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11.1005(9)-11.1829(12), c = 5.4537(5)-5.5449(6) Å), HfAl_{2.64}Sn_{0.36} (UCuAl₂, *tI*8, *I4/mmm*, *a* = 3.95450(2), c = 8.94451(12) Å), Hf₅Al_{2.70}Sn_{0.30} (Mn₅Si₃, *hP*16, *P*6₃/*mcm*, *a* = 10.9627(8)-11.0291(9), c = 5.4138(4)-5.4913(5) Å).

In the systems {Zr,Hf}–Al–Sb (600°C) solid solutions of the substitution type based on the binary antimonides Zr_5Sb_4 , Zr_5Sb_3 , and Hf_5Sb_3 , which dissolve 11.1, 2.5, and 3 at.% Al, respectively, were defined. The other binary compounds do not dissolve the third component. The existence of nine ternary alumoantimonides with constant or variable compositions was established at 600°C: $ZrAl_{2.65}Sb_{0.35}$ (UCuAl₂, *tI*8, *I4/mmm*,

a = 3.9142(2), c = 8.9753(4) Å), Zr₂AlSb₃ (Zr₂CuSb₃, *tP*6, *P*-4*m*2, *a* = 3.9826(2), c = 8.7144(5) Å), Zr₅Al_{2.55}Sb_{0.45} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 11.0120(9), c = 5.3913(5) Å), Zr₅Al_{1.55-0.65}Sb_{1.45-2.35} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 10.9810(9)-11.0731(12), c = 5.4153(5)-5.4482(6) Å), HfAl_{2.67}Sb_{0.33} (UCuAl₂, *tI*8, *I4/mmm*, a = 3.94191(9), c = 8.9078(2) Å), Hf₂AlSb₃ (Zr₂CuSb₃, *tP*6, *P*-4*m*2, *a* = 3.9021(2), c = 8.6510(5) Å), Hf₅AlSb₃ (Hf₅CuSn₃, *hP*18, *P*6₃/*mcm*, *a* = 8.3572(3), c = 5.6914(2) Å), Hf₅Al_{2.49}Sb_{0.51} (Mn₅Si₃, *hP*16, *P*6₃/*mcm*, *a* = 8.0934(5), *c* = 5.6560(5) Å), and Hf₅Al_{1.52-0.74}Sb_{1.48-2.26} (Nb₅SiSn₂, *tI*32, *I4/mcm*, *a* = 10.8908(8)-10.9344(9), *c* = 5.5114(4)-5.5403(5) Å).

Based on the experimental investigations, peculiarities of the interaction of the components in the systems {Zr,Hf}-Al-{Si,Ge,Sn,Sb} were pointed out. A comparative analysis of these and related ternary systems was carried out, and crystal-chemical regularities of the ternary compounds were deduced. Similarities were observed for systems with the same *d*-element (Zr or Hf), as well as between systems with Zr or Hf and the same *p*-element of group 14 (Si, Ge, Sn) or 15 (Sb) of the periodic system. The smallest number of ternary compounds (2) was found in the system Hf-Al-Si, and the largest number of ternary compounds (5 in each system) in the systems Zr-Al-Ge and Hf-Al-Sb. When moving from the systems with Si to the systems with Ge, the character of the interaction of the components becomes more complex, which is reflected in an increase of the total number of ternary compounds from 5 in the systems {Zr,Hf}-Al-Si to 9 in the systems {Zr,Hf}-Al-Ge. When moving to the systems with Sn, the number of ternary compounds decreases to 6, but the replacement of Sn by Sb leads to an increase to 9. The crystal structures of the ternary compounds of the systems {Zr,Hf}-Al-{Si,Ge,Sn,Sb} belong to seven structure types; for most of them, a tendency to ordering of atoms of different chemical elements was observed.

The structure types that form at 25 at.% Zr or Hf in the systems {Zr,Hf}–Al– {Si,Ge,Sn,Sb} at 600°C are ordered derivatives of the structure type Cu (cF4, Fm-3m), and are built from close-packed atomic layers exclusively in cubic stacking – ZrAl₃ (tI16, I4/mmm), TiAl₃ (tI8, I4/mmm), and UCuAl₂ (tI8, I4/mmm). The compactness calculated for these structures (relation $V_{\text{atoms}}/V_{\text{cell}}$) for the binary and ternary compounds is larger than for the structure of elementary Al. The largest value of compactness (79.5 %) was found for the ternary compound ZrAl_{2.65}Sb_{0.35}. The new structure type ZrAl_{0.23}Ge_{1.77} (*tI*32, $I4_1/amd$) is characterized by partial ordering of the Al and Ge atoms, as well as positional disorder of Ge atoms, modeled by splitting one crystallographic position. It belongs to a series of linear intergrowth structures composed of fragments characteristic of the basic structure types AlB₂ and CaF₂. The new structure type $Zr_{11}Al_{3.34}Ge_{6.66}$ (*t1*84, I4/mmm) is a quaternary variant of the structure type Ho₁₁Ge₁₀ and is characterized by partial ordering of the Al and Ge atoms. The structure can be seen as a stacking of trigonal prisms and square antiprisms centered by atoms of the *p*-elements. The crystal structures of the phases with high Zr or Hf content are built from columns of polyhedra: octahedra in the structures Hf₅(Al_{1-x} M_x)₃ (M = Si, Ge, Sn, Sb; structure type Mn₅Si₃, hP16, $P6_3/mcm$) and T_5AlM_3 (T = Zr, Hf; M = Ge, Sn, Sb; structure type Hf₅CuSn₃ hP18, P6₃/mcm), and square antiprisms and tetrahedra in the structures of $Zr_5(Al_{1-x}M_x)_3$ (M = Si, Ge, Sn, Sb) and Hf₅(Al_{1-x} M_x)₃ (M = Sn, Sb) (structure type Nb₅SiSn₂, tI32, I4/mcm). Increasing the Zr or Hf content in the compounds (decrease of p-elements content) changes the coordination environments of the *p*-element atoms: from cuboctahedral (25 at.% Zr(Hf)) to trigonal-prismatic and tetrahedral (33.3 at.% Zr(Hf)), trigonal-prismatic and squareantiprismatic (52.4 at.% Zr(Hf)), trigonal-prismatic and octahedral (55.5 at.% Zr(Hf)), and square-antiprismatic and icosahedral (62.5 at.% Zr(Hf)). Depending on the ratio of the components in the {Zr,Hf}-Al-{Si,Ge,Sn,Sb} systems, it is possible to purposefully change the coordination environment of atoms and the dimensionality of the structure from three-dimensional (cubic close-packing) to one-dimensional (structures with columns of polyhedra). Managing the anisotropy of the structure has an influence on the optimization of physical properties.

The scientific novelty of the obtained results lies in the fact that for the first time the phase equilibria were determined and isothermal sections of the phase diagrams of the systems {Zr,Hf}-Al-{Si,Ge,Sn,Sb} at 600°C were constructed in the whole concentration range; the homogeneity ranges of the ternary compounds and solid solutions based on binary compounds were established; two continuous solid solutions between binary compounds, 21 limited solid solutions of the substitution type and one

solid solution of the inclusion type based on binary intermetallics were found. The existence of 29 ternary compounds (5 silicides, 9 germanides, 6 stannides, and 9 antimonides) at 600°C was established, 22 of which are new. For all of the ternary compounds the crystal structures were determined and, by means of X-ray singe-crystal and powder diffraction, two new structure types, $ZrAl_{0.23}Ge_{1.77}$ and $Zr_{11}Al_{3.34}Ge_{6.66}$, were determined. Based on the results of the experimental investigations, peculiarities of the interaction of the components in the ternary systems {Zr,Hf}-Al-{Si,Ge,Sn,Sb} were emphasized, and crystal-chemical regularities of the ternary compounds were deduced. Relationships between the chemical composition and the crystal structure of the ternary phases in the studied systems were established.

Keywords: zirconium, hafnium, aluminum, silicon, germanium, tin, antimony, X-ray diffraction, X-ray spectroscopy, phase equilibria, phase diagram, solid solution, intermetallic compound, crystal structure, coordination polyhedron.

СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Наукові праці, в яких опубліковані основні наукові результати дисертації:

- Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Structural evolution in the systems TAl_{3-x}Ge_x (T = Zr, Hf). *Solid State Phenom.* 2019, 289, 71–76. https://doi.org/10.4028/www.scientific.net/SSP.289.71
- Maryskevych, D.; Tokaychuk; Ya., Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of Zr₅AlGe₃. *Chem. Met. Alloys* 2019, *12* (1/2), 39–43. https://doi.org/10.30970/cma12.0393
- Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,70}Ge_{0,30}. Вісник Львів. ун-ту. Серія хім. 2020, 61, 63–70. https://doi.org/10.30970/vch.6101.063
- Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. The ternary system Zr–Al–Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds. *Chem. Met. Alloys* 2022, *15* (*1/2*), 1–7. https://doi.org/10.30970/cma15.0421
- Maryskevych, D.; Tokaychuk, Ya.; Akselrud, L.; Gladyshevskii, R. The structure type ZrAl_{0.23}Ge_{1.77}. *Phys. Chem. Solid State* 2023, *24* (3), 448–452. https://doi.org/10.15330/pcss.24.3.448-452

Наукові праці, які засвідчують апробацію матеріалів дисертації:

- 1. **Maryskevych, D.**; Tokaychuk, Ya.; Gladyshevskii, R. Structural evolution in the systems $TAl_{3-x}Ge_x$ (T = Zr, Hf). Progr. Abstr. 21 International Conference on Solid Compounds of Transition Elements, Vienna, Austria, March 25–29, 2018; p. 24.
- Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Кристалічна структура сполуки HfAl_{2,7}Ge_{0,3}. Зб. тез. допов. І Міжнародної (XI Української) наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", м. Вінниця, Україна, 27–29 березня, 2018; с. 103.
- 3. **Марискевич,** Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні алюмогерманіди ZrAl_{2,5}Ge_{0,5} і HfAl_{2,4}Ge_{0,6}. Тези допов. Х Всеукраїнської наукової конференції студентів та аспірантів "Хімічні Каразінські читання 2018", м. Харків, Україна, 23–25 квітня, 2018; с. 35–36.
- Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,7}Ge_{0,3}. Зб. наук. праць XVII Наукової конференції "Львівські хімічні читання – 2019", м. Львів, Україна, 2–5 червня, 2019; с. НЗ9.
- Maryskevych, D.; Tokaychuk, Ya.; Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of the compound Zr₅AlGe₃. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 106.
- Марискевич, Д.; Токайчук, Я.; Аксельруд, Л.; Гладишевський, Р. Кристалічна структура сполуки ZrAl_{0,23}Ge_{1,77}. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання – 2021", м. Львів, Україна, 31 травня – 2 червня, 2021; с. H30.
- Maryskevych, D. T.; Tokaychuk, Ya. O.; Gladyshevskii, R. E. Crystal structure of the new ternary compound Zr₅Al_{0.41}Sn_{2.59}. Зб. тез. допов. V Міжнародної (XV Української) наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", Вінниця, Україна, 22–24 березня, 2022; с. 51.
- 8. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні сполуки системи Zr–Al–Sn (600°С). Матер. VI Всеукраїнської наукової конференції

"Актуальні задачі хімії: дослідження та перспективи", м. Житомир, Україна, 5 жовтня, 2022; с. 87–88.

 Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Crystal structure of the ternary compounds HfAl_{2.67}Sb_{0.33} and Hf₂AlSb₃. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 91.

3MICT

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ	. 19
ВСТУП	. 20
РОЗДІЛ 1 ОГЛЯД ЛІТЕРАТУРИ	. 26
1.1. Характеристика компонентів потрійних	
систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}	. 26
1.2. Подвійні системи	. 28
1.2.1. Системи {Zr,Hf}-A1	. 28
1.2.2. Системи {Zr,Hf}-Si	. 31
1.2.3. Системи {Zr,Hf}-Ge	. 33
1.2.4. Системи {Zr,Hf}-Sn	. 36
1.2.5. Системи {Zr,Hf}-Sb	. 38
1.2.6. Системи Al-{Si,Ge,Sn,Sb}	. 39
1.3. Потрійні системи	. 42
1.3.1. Системи {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Pb,Sb,Bi}	. 43
1.3.2. Системи {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb}	. 49
1.3.3. Системи {Nb,Ta}-Al-{Si,Ge,Sn,Sb}	. 54
1.4. Висновки з огляду літератури. Обґрунтування	
вибору об'єктів дослідження	. 57
РОЗДІЛ 2 МЕТОДИКА ЕКСПЕРИМЕНТУ	. 63
2.1. Синтез зразків	. 63
2.1.1. Вихідні матеріали	. 63
2.1.2. Синтез та контроль складу сплавів	. 63
2.1.3. Термічна обробка сплавів	. 64
2.2. Рентгенівські методи дослідження	. 64
2.2.1. Рентгенівський дифракційний фазовий аналіз	. 64
2.2.2. Локальний енергодисперсійний рентгенівський спектральний аналіз	. 65
2.2.3. Рентгеноструктурний аналіз методом монокристалу	. 66
2.2.4. Рентгеноструктурний аналіз методом порошку	. 67
2.3. Кристалохімічний аналіз структур	. 69
РОЗДІЛ З РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛІДЖЕНЬ	. 70
3.1. Фазові рівноваги в потрійних системах	. 70
3.1.1. Бінарні сполуки систем {Zr,Hf}-Al, {Zr,Hf}-{Si,Ge,Sn,Sb}	
Ta $\{Zr,Hf\}$ -Sb	. 70

3.1.2. Системи {Zr,Hf}-Al-Si 71
3.1.3. Системи {Zr,Hf}-Al-Ge 75
3.1.4. Системи {Zr,Hf}-Al-Sn 79
3.1.5. Системи {Zr,Hf}-Al-Sb
3.2. Кристалічні структури тернарних фаз
3.2.1. Сполуки $TAl_{3-x}M_x$ ($T = Zr$, Hf; $M = Si$, Ge, Sn, Sb) з структурами типів
TiAl ₃ i UCuAl ₂
3.2.2. Новий структурний тип ZrAl _{0,23} Ge _{1,77}
3.2.3. Сполуки T_2 AlSb ₃ ($T = Zr$, Hf) з структурою типу Zr_2 CuSb ₃ 100
3.2.4. Новий структурний тип Zr ₁₁ Al _{3,34} Ge _{6,66} 104
3.2.5. Фази T_5 Al M_3 ($T = Zr$, Hf; $M =$ Ge, Sn, Sb)
з структурою типу Hf5CuSn3109
3.2.6. Сполуки $Hf_5Al_{3-x}M_x$ ($M = Si$, Ge, Sn, Sb) з структурою типу Mn_5Si_3 113
3.2.7. Сполуки $Zr_5Al_{3-x}M_x$ ($M = Si$, Ge, Sn, Sb) i $Hf_5Al_{3-x}M_x$ ($M = Sn$, Sb)
з структурою типу Nb ₅ SiSn ₂ 117
РОЗДІЛ 4 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ
4.1. Особливості взаємодії компонентів у системах
$\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ 130
4.2. Кристалохімічні закономірності тернарних фаз систем $(7, 110)$ A1 ($(3, 6, 5, 5)$)
${Zr,HI}-AI-{SI,Ge,Sn,Sb}$
4.2.1. Наищільніші упаковки атомів
4.2.2. Представники серій лінійних неоднорідних структур
4.2.3. Впорядкування атомів у структурах сполук $Zr_{11}AI_{3,34}Ge_{6,66}$ 1
$HI_{11}AI_{3,50}OC_{6,50}$
4.2.4. Гернарні фази Новотного
4.2.5. Гетрагонально-антипризматична координація атомів AI/M
у структурах тернарних сполук 15(Ац,и)3
$C\Pi I C O V D I V O D I C T A U I V T WEDET 120$
υπηγοκ δεικογείς ι απεία μπεγεμι
додаток1/4

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

ат.% – атомний відсоток;

ВТМ – висококотемпературна модифікація;

КЗП – коефіцієнт заповнення позиції;

КЧ – координаційне число;

Літ. – література;

мас.% – масовий відсоток;

НРТР – неперервний ряд твердих розчинів;

НТМ – низькотемпературна модифікація;

ПГ – просторова група;

ПСТ – правильна система точок;

СТ – структурний тип;

стаб. – стабілізована сполука;

СП – символ Пірсона;

а, *b*, *c*, α , β , γ – параметри елементарної комірки;

*B*_{ізо} – ізотропний параметр зміщення атомів;

L – область рідкого стану;

M-p-елемент;

*t*_{кип.} – температура кипіння;

 $t_{\text{топ.}}$ – температура топлення;

V-об'єм елементарної комірки;

x, y, z – координати атомів;

Z-кількість формульних одиниць в елементарній комірці;

 δ – міжатомна віддаль;

×- знак переносу хімічної формули;

... – дані відсутні.

ВСТУП

Обгрунтування вибору теми дослідження та її актуальність. Сучасні наукові дослідження в галузі хімії спрямовані насамперед на синтез нових сполук для розробки функціональних матеріалів з покращеними хімічними, фізичними, механічними властивостями. Важливе місце серед таких сполук займають інтерметалічні сполуки, а створені на основі них матеріали – конструкційні, термоелектричні та інші – здатні функціонувати в різних умовах, проявляючи при цьому унікальні властивості.

Алюміній теплопровідністю характеризується високою та електропровідністю і є основою великого різноманіття конструкційних матеріалів. Їх, завдяки малій густині, добрим ливарним властивостям, високій міцності та корозійній стійкості використовують у багатьох галузях промисловості, зокрема авіабудівній, автомобіле-, та аерокосмічній, будівельній судно-TOIIIO. Експлуатаційні характеристики сплавів на основі алюмінію покращуюють, зокрема легуванням іншими металами, чи інтерметалічними сполуками.

Цирконій і гафній часто застосовують як легуючі і модифікуючі композиційні добавки до різних металів і сплавів для підвищення їхньої міцності, твердості, жаростійкості та корозійної стійкості. Завдяки малому поперечному перетину захоплення нейтронів і високій стійкості проти корозії сплави на основі цирконію та гафнію використовують як конструкційні матеріали в атомній техніці, зокрема для сворення стрижнів ядерних реакторів. Фізико-хімічні властивості цирконію та гафнію, як наприклад міцність, твердість і жаростійкість, зумовлюють використання їхніх сплавів для створення деталей турбореактивних двигунів з покращеними експлуатаційними характеристиками для літальних апаратів і ракет.

Неорганічні сполуки силіцію та ґерманію широко використовуюють у радіоелектронній та ядерній техніці, зокрема для виготовлення мікроелектронних приладів, завдяки їхнім напівпровідниковим властивостям. Крім того, їх часто використовують як легуючі добавки для підвищення експлуатаційних характеристик конструкційних матеріалів, зокрема для підвищення стійкості до корозії. Олово та стибій також володіють високою корозійною стійкістю і їх широко використовують в різних галузях промисловості, в основному, як легуючі добавки для підвищення техніко-експлуатаційних характеристик матеріалів і для створення нових термоелектричних, термометричних і напівпровідникових матеріалів.

Основою створення новітніх матеріалів є встановлення взаємозв'язку між хімічним складом речовини та її будовою на атомному рівні. Тому фундаментальні дослідження взаємодії компонентів у металічних системах, встановлення фазових рівноваг, побудова діаграм стану, прецизійне визначення параметрів кристалічної структури сполук і їхніх кристалохімічних закономірностей сьогодні є актуальними.

Встановлення фазових рівноваг, областей гомогенності і кристалічної структури інтерметалічних сполук у потрійних системах $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ дозволить з'ясувати особливості хімічної взаємодії компонентів у цих системах, умови утворення та існування фаз і закономірності їхньої кристалічної будови, що буде використано для прогнозування взаємодії в інших металічних системах за участю перехідних *d*-металів і *p*-елементів 13-15 груп періодичної системи елементів, а також для синтезу нових сполук з метою розробки функціональних матеріалів.

Зв'язок роботи з науковими програмами, планами, темами, ґрантами. Дисертаційна робота виконана на кафедрі неорганічної хімії Львівського національного університету імені Івана Франка у відповідності з науковотематичними програмами Міністерства освіти і науки України, зокрема за держбюджнтними темами: "Синтез і кристалохімія нових інтерметалідів подвійного призначення", номер державної реєстрації 0118U003609, "Синтез сполук і кристалохімічний інтерметалічних нових алгоритм створення високоефективних матеріалів", номер державної реєстрації 0121U109766, "Нові інтерметаліди: синтез, хімічний і структурний тюнінг для забезпечення високої енергоефективності", номер державної реєстрації 0121U107937. Здобувач пов'язані з виконував експериментальні дослідження, синтезом зразків,

рентгенофазовим, рентгеноспектральним і рентгеноструктурним аналізами, побудовою ізотермічних перерізів діаграм стану, пошуком нових сполук і твердих розчинів, визначенням їхніх областей гомогенності і кристалічних структур. Частину експериментальних досліджень було здійснено здобувачем в Університеті Яна Длугоша (м. Ченстохова, Польща) під час наукового стажування в рамках програми Польського національного агентства з питань академічного обміну NAWA.

Мета і завдання дослідження. Мета роботи – встановлення особливостей хімічної взаємодії компонентів у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, побудова ізотермічних перерізів діаграм стану систем при 600°С, визначення кристалічної структури тернарних сполук і виведення їхніх кристалохімічних закономірностей. Для досягнення мети необхідно було:

- здійснити огляд літературних відомостей за темою роботи;
- синтезувати сплави у системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb}, провести їхній фазовий і структурний аналізи;
- встановити межі розчинності третього компонента у бінарних сполуках та області гомогенності тернарних сполук;
- побудувати ізотермічні перерізи діаграм стану систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} при 600°С;
- визначити параметри кристалічної структури синтезованих сполук; здійснити їхній кристалохімічний аналіз;
- проаналізувати закономірності утворення тернарних сполук у досліджених системах; вивести загальні кристалохімічні закономірності.

Об'єкт дослідження: взаємодія компонентів у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb}.

Предмет дослідження: фазові рівноваги у системах Zr–Al–Si, Hf–Al–Si, Zr–Al–Ge, Hf–Al–Ge, Zr–Al–Sn, Hf–Al–Sn, Zr–Al–Sb і Hf–Al–Sb при 600°C, кристалічні структури тернарних сполук і твердих розчинів.

Методи синтезу та дослідження: електродугове сплавляння і гомогенізуючий відпал, рентгенівський фазовий аналіз, рентгенівський

структурний аналіз методами монокристалу та порошку, скануюча електронна мікроскопія та локальний енергодисперсійний рентгенівський спектральний аналіз, комп'ютерна обробка результатів експерименту, кристалохімічний аналіз.

Наукова новизна одержаних результатів. Вперше визначено фазові рівноваги та побудовано ізотермічні перерізи (600°С) діаграм стану систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} у повних концентраційних інтервалах. Встановлено області гомогенності тернарних сполук і межі твердих розчинів на основі бінарних сполук; знайдено два неперервні ряди твердих розчинів між бінарними сполуками, 21 обмежений твердий розчин заміщення і однин твердий розчин включення на основі бінарних інтерметалідів. Встановлено утворення 29 тернарних сполук (5 силіцидів, 9 германідів, 6 станідів і 9 антимонідів), 22 з яких – нові. Для всіх тернарних сполук визначено параметри кристалічних структур. Рентгенівськими дифракційними методами монокристалу та порошку розшифровано два нові структурні типи – ZrAl_{0,23}Ge_{1,77} і Zr₁₁Al_{3,34}Ge_{6,66}.

На основі результатів експериментальних досліджень встановлено особливості взаємодії компонентів у потрійних системах {Zr,Hf}–Al– {Si,Ge,Sn,Sb}, здійснено їхній порівняльний аналіз між собою та із спорідненими, виведено кристалохімічні закономірності тернарних сполук *d*- і двох *p*-елементів, встановлено взаємозв'язок між хімічним складом і кристалічною структурою тернарних фаз у досліджених системах.

Практичне значення одержаних результатів. Отримані експериментальні відомості про характер взаємодії компонентів у потрійних системах $\{Zr,Hf\}-Al \{Si,Ge,Sn,Sb\}$ і кристалічні структури сполук, що утворюються в цих системах, є важливими для неорганічної хімії, кристалохімії і матеріалознавства. На основі одержаних результатів можна прогнозувати взаємодію компонентів у ще не досліджених системах за участю перехідних *d*-металів з алюмінієм та *p*-елементами 14 і 15 груп періодичної системи елементів і здійснювати ідентифікацію фаз під час розробки матеріалів. Ізотермічні перерізи діаграм стану і кристалохімічні особливості структур тернарних сполук використовують під час викладання фахових навчальних дисциплін для бакалаврів і магістрів хімічного факультету Львівського національного університету імені Івана Франка. Побудовані ізотермічні перерізи діаграм стану будуть внесені в базу даних ASM Alloy Phase Diagram Database, США, Швейцарія, Японія. Кристалографічні параметри та масиви дифракційних даних тернарних сполук поповнили бази даних Pearson's Crystal Data, США, Швейцарія (8 сполук) і Міжнародного центру дифракційних даних ІСDD, США (9 сполук).

Особистий внесок здобувача. Формулювання та обґрунтування мети та завдань досліджень здійснено разом з науковим керівником акад. НАН України, проф. Гладишевським Р.Є. Здобувач самостійно, згідно з рекомендаціями наукового керівника, виконав пошук та аналіз літературних відомостей за темою роботи, експериментальну частину дослідження – синтез і термічну обробку сплавів систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, їхній фазовий аналіз, побудову ізотермічних перерізів діаграм стану, визначення параметрів кристалічних структур сполук, а також аналіз одержаних результатів. Визначення та уточнення кристалічних структур окремих тернарних фаз проведено спільно з пр.н.сп. Аксельрудом Л.Г., ст.н.сп. Токайчуком Я.О. і н.сп. Процем Ю.М. Обговорення результатів досліджень і формулювання висновків дисертаційної роботи здійснено з науковим керівником акад. НАН України, проф. Гладишевським Р.Є.

Апробація результатів дисертації. Результати дисертаційної роботи були представлені на науковому семінарі кафедри неорганічної хімії, Звітних наукових конференціях Львівського університету (м. Львів, 2020, 2021, 2022, 2023) та на дев'яти міжнародних та українських наукових конференціях: International Conference on Solid Compounds of Transition Elements (Vienna, Austria, 2018), Всеукраїнській науковій конференції студентів та аспірантів "Хімічні Каразінські читання" (м. Харків, 2018), Міжнародних наукових конференціях студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення" (м. Вінниця, 2018, 2022), Наукових конференціях "Львівські хімічні читання" (м. Львів, 2019, 2021), International Conference on Crystal Chemistry of Intermetallic Compounds (Lviv, 2019, 2023), VI Всеукраїнській наукової конференції "Актуальні задачі хімії: дослідження та перспективи" (м. Житомир, 2022).

Публікації. За матеріалами дисертації опубліковано 5 статей у фахових виданнях, у т.ч. 2 у міжнародних виданнях, що входять до наукометричної бази даних Scopus, та тези 9 доповідей на конференціях, з них 5 – на міжнародних.

Структура та обсяг роботи. Дисертація складається з анотації українською та англійською мовами, вступу, 4 розділів, висновків, списку використаних у роботі літературних джерел і додатку. Дисертація викладена на 177 сторінках (з них 4 сторінки додатку), містить 49 таблиць та 78 рисунків. Список використаних літературних джерел нараховує 155 найменувань.

РОЗДІЛ 1

ОГЛЯД ЛІТЕРАТУРИ

Першим кроком дослідження потрійних систем $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ був огляд та аналіз літературних відомостей. У розділі зібрано інформацію про компоненти, подвійні системи, що лімітують досліджувані потрійні системи, та найбільш споріднені потрійні системи, а також кристалографічні характеристики сполук, що в них утворюються. Для цього було використано наукові бази даних, ASM Alloy Phase Diagram Database [1], Pauling File [2], Binary Alloy Phase Diagrams [3], Pearson's Crystal Data [4], Handbook of Inorganic Substances [5], а також оригінальні статті. У випадку схожості відомостей в різних джерелах перевагу надавали вперше опублікованим та прецизійніше визначеним параметрам.

1.1. Характеристика компонентів потрійних систем

{Zr,Hf}-Al-{Si,Ge,Sn,Sb} [6, 7]

У цьому розділі приведено основні характеристики простих речовин, які використовували для синтезу сплавів. Значення радіусів та електронегативностей для Zr, Hf, Al, Si, Ge, Sn та Sb подано у табл. 1.1.

Цирконій (Zr) – блискучий метал сріблясто-сірого кольору. $t_{\text{топ.}} = 1852^{\circ}\text{C}$; $t_{\text{кип.}} = 4377^{\circ}\text{C}$. Густина – 6,506 г/см³ (при 20°С). Існує дві температурні алотропні модифікації цирконію: НТМ Zr (CT Mg, CП *hP*2, ПГ *P*6₃/*mmc*, a = 3,23, c = 5,14 Å) [8] і BTM Zr (CT W, CП *cI*2, ПГ *Im-3m*, a = 3,59 Å) [9]; температура фазового переходу НТМ Zr \leftrightarrow BTM Zr становить 863°C. При 600°C стабільною є модифікація зі структурою типу Mg.

Гафній (Hf) – блискучий метал сріблясто-сірого кольору. $t_{\text{топ.}} = 2230^{\circ}\text{C}$; $t_{\text{кип.}} = 5197^{\circ}\text{C}$. Густина – 13,310 г/см³ (при 20°С). Існує дві температурні алотропні модифікації цирконію: НТМ Hf (СТ Mg, СП *hP*2, ПГ *P*6₃/*mmc*, a = 3,32, c = 5,46 Å) [10] і ВТМ Hf (СТ W, СП *cI*2, ПГ *Im-3m*, a = 3,50 Å) [11]; температура

фазового переходу HTM Hf ↔ BTM Hf становить 1743°С. При 600°С стабільною є модифікація зі структурою типу Mg.

Таблиця 1.1

		Електро-				
Елемент	металічний	атомний	ковалентний	йонний	негативність (за Полінгом)	
Zr	1,60	1,60	1,45	1,09 (Zr ²⁺) 0,80 (Zr ⁴⁺)	1,33	
Hf	1,58	1,56	1,44	0,81 (Hf ⁴⁺)	1,30	
Al	1,43	1,43	1,18	0,50 (Al ⁴⁺)	1,61	
Si	1,32	1,32	1,11	2,71 (Si ¹⁻) 0,41 (Si ⁴⁺)	1,90	
Ge	1,37	1,37	1,22	0,93 (Ge ²⁺) 0,53 (Ge ⁴⁺)	2,01	
Sn	1,55	1,62	1,41	1,12 (Sn ²⁺) 0,71 (Sn ⁴⁺)	1,96	
Sb	1,59	1,59	1,40	$2,45 (Sb^{3-}) \\0,89 (Sb^{3+}) \\0,62 (Sb^{5+})$	2,05	

Радіуси та електронегативності компонентів систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb}

Алюміній (Al) – сріблясто-білий метал. $t_{\text{топ.}} = 660^{\circ}\text{C}$; $t_{\text{кип.}} = 2467^{\circ}\text{C}$. Густина – 2,698 г/см³ (при 20°С). Кристалічна структура Al належить до структурного типу Cu (СП *cF*4, ПГ *Fm*-3*m*, *a* = 4,0501 Å) [12].

Кремній (Si) – темно-сіра крихка речовина. $t_{\text{топ.}} = 1414^{\circ}\text{C}$; $t_{\text{кип.}} = 2355^{\circ}\text{C}$. Густина – 2,329 г/см³ (при 20°С). Стабільною є модифікація з кубічною гранецентрованою ґраткою (СТ С (алмаз), СП *сF*8, ПГ *Fd*-3*m*, *a* = 5,431 Å) [13].

Ґерманій (Ge) – речовина сіро-білого кольору з металічним блиском. $t_{\text{топ.}} - 938^{\circ}\text{C}$; $t_{\text{кип.}} - 2830^{\circ}\text{C}$. Кристалічна структура Ge належить до структурного типу C (алмаз) (СП *cF*8, ПГ *Fd*-3*m*, *a* = 5,658 Å) [13].

Олово (Sn) – сріблясто-білий метал. $t_{\text{топ.}} = 232^{\circ}\text{C}$; $t_{\text{кип.}} = 2270^{\circ}\text{C}$. Густина – 5,750 г/см³ (при 20°С). Для олова характерні дві стабільні температурні алотропні

модифікації: HTM Sn (CT C (алмаз), CП *cF*8, ПГ *Fd*-3*m*, , a = 6,489 Å) [14] та BTM Sn з власним типом структури (CП *tI*4, ПГ *I*4₁/*amd*, a = 5,84, c = 3,15 Å) [15]; температура фазового переходу HTM Sn ↔ BTM Sn становить 13°C.

Стибій (Sb) — речовина сіро-білого кольору з металічним блиском. Густина — 6,691 г/см³ (при 20°С). $t_{\text{топ.}} = 630^{\circ}$ С; $t_{\text{кип.}} = 1635^{\circ}$ С. Стабільною є модифікація зі СТ Аs (СП *hR*6, ПГ *R-3m*, *a* = 4,3084, *c* = 11,274 Å) [16].

1.2. Подвійні системи

1.2.1. Системи {Zr,Hf}-Al

Діаграма стану системи Zr–Al (рис. 1.1) характеризується існуванням 10 сполук постійного складу [17, 18]. Сполуки Zr₅Al₄, ZrAl₂ і ZrAl₃ утворюються безпосередньо з розплаву при 1530, 1645 і 1580°С, відповідно. Сполуки Zr₅Al₃, Zr₃Al₂ і Zr₂Al₃ утворюються в результаті перитектичних реакцій при 1395, 1480 і 1595°С, відповідно. Сполуки Zr₃Al, Zr₂Al, Zr₄Al₃ і ZrAl утворюються за перитектоїдними реакціями при 988, 1250 1023 і 1275°С, відповідно. Сполуки Zr₅Al₃ та Zr₅Al₄ існують в обмеженому температурному інтервалі: 1000-1395°С та 1003-1530°С, відповідно. Для Zr₂Al у літературі повідомлено два типи структури [19, 20], а також існування стабілізованої домішками фази Zr₅Al₃ [21] зі структурою типу Mn₅Si₃. Кристалографічні характеристики бінарних сполук системи Zr–Al наведено у табл. 1.2.

У системі Zr–Al відбуваються три евтектичні перетворення:

 $L \leftrightarrow Zr(BTM) + Zr_5Al_3$ (1350°C, 70 at.% Zr),

 $L \leftrightarrow Zr_5Al_4 + Zr_2Al_3$ (1485°C, 52 at.% Zr),

 $L \leftrightarrow ZrAl_2 + ZrAl_3$ (1490°C, 27 at.% Zr).

У Zr розчиняється значна кількість Al: 11,5 ат.% у Zr(HTM) при 940°С і 26 ат.% у Zr(BTM) при 1350°С. При 600°С розчинність Al в Zr(HTM) становить 1,3 ат.%. Zr не розчиняється у Al.

Система Hf-Al (рис. 1.2) характеризується утворенням семи сполук постійного складу [17]. Сполуки Hf₃Al₂, HfAl, HfAl₂, i HfAl₃ утворюються

безпосередньо з розплаву при 1590, 1800, 1650 і 1590°С, відповідно. Алюмінід Hf₂Al₃ утворюється в результаті перитектичної реакції при 1640°С, а Hf₂Al і Hf₄Al₃ – в результаті перитектоїдних реакцій при 1150 і 1430°С, відповідно. Сполука HfAl₃ існує у двох поліморфних модифікаціях. Крім того, існують відомості про сполуку Hf₅Al₃, яка утворюється при стабілізації домішками [22].

Рис. 1.1. Діаграма стану системи Zr-Al.

Рис. 1.2. Діаграма стану системи Hf-Al.

Таблиця 1.2

Кристалографічні характеристики сполук систем Zr-Al та Hf-Al

0	СТ	СП	ΠΓ	Парам	п.		
Сполука				а	b	С	JI1T.
Zr ₃ Al	Cu ₃ Au	cP4	Pm-3m	4,3917	_	_	[23]
	CuAl ₂	<i>tI</i> 12	I4/mcm	6,854	_	5,501	[19]
Zr_2AI	Co _{1,75} Ge	hP6	<i>P</i> 6 ₃ / <i>mmc</i>	4,882	_	5,918	[20]
Zr ₅ Al ₃ (BTM)	W_5Si_3	<i>tI</i> 32	I4/mcm	11,049	_	5,396	[17]
Zr ₅ Al ₃ (стаб.)	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,184	_	5,702	[21]
Zr ₃ Al ₂	Zr_3Al_2	<i>tP</i> 20	P4 ₂ /mnm	7,630	_	6,998	[24]
Zr ₄ Al ₃	Zr_4Al_3	hP7	P6/mmm	5,433	_	5,390	[25]
Zr ₅ Al ₄	Ti ₅ Ga ₄	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,447	_	5,810	[26]
ZrAl	TlI	<i>oS</i> 8	Стст	3,353	10,866	4,266	[18]
Zr ₂ Al ₃	Zr_2Al_3	oF40	Fdd2	5,572	9,598	13,879	[20]
ZrAl ₂	MgZn ₂	<i>hP</i> 12	P6 ₃ /mmc	5,2824	_	8,7482	[27]
ZrAl ₃	ZrAl ₃	<i>tI</i> 16	I4/mmm	4,005		17,285	[28]
Hf ₂ Al	CuAl ₂	<i>tI</i> 12	I4/mcm	6,776	_	5,372	[19]
Hf ₅ Al ₃ (стаб.)	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,052	_	5,690	[22]
Hf_3Al_2	Zr_3Al_2	<i>tP</i> 20	P4 ₂ /mnm	7,535	_	6,906	[29]
Hf ₄ Al ₃	Zr_4Al_3	hP7	P6/mmm	5,343	_	5,422	[20]
HfAl	TlI	<i>oS</i> 8	Стст	3,253	10,831	4,282	[30]
Hf ₂ Al ₃	Zr_2Al_3	oF40	Fdd2	9,529	13,763	5,522	[31]
HfAl ₂	MgZn ₂	<i>hP</i> 12	<i>P</i> 6 ₃ / <i>mmc</i>	5,288		8,739	[17]
HfAl ₃ (BTM)	TiAl ₃	tI8	I4/mmm	3,893		8,925	[20]
HfAl ₃ (HTM)	ZrAl ₃	<i>tI</i> 16	I4/mmm	3,9849	_	17,1443	[20]

У системі Hf–Al відбуваються чотири евтектичні перетворення:

 $L \leftrightarrow Hf(BTM) + Hf_3Al_2$ (1530°C, 63 at.% Hf),

- $L \leftrightarrow Hf_3Al_2 + HfAl (1550^{\circ}C, 56 \text{ at.}\% \text{ Hf}),$
- $L \leftrightarrow Hf_2Al_3 + HfAl_2$ (1495°C, 37 at.% Hf),
- $L \leftrightarrow HfAl_2 + HfAl_3$ (1540°C, 28 at.% Hf).

У Нf розчиняється велика кількість Al: 30,5 aт.% у Hf(HTM) при 1450°С, і 33 aт.% у Hf(BTM) при 1450°С. При 600°С розчинність Al в Hf(HTM) становить 5,1 aт.%. Hf не розчиняється в Al.

Кристалографічні характеристики бінарних сполук системи Hf–Al наведено у табл. 1.2.

1.2.2. Системи {Zr,Hf}-Si

Система Zr–Si характеризується існуванням семи бінарних сполук постійного складу (рис. 1.3) [32]. Сполука Zr₅Si₄ утворюється безпосередньо з розплаву при 2250°С. Сполуки Zr₃Si, Zr₂Si, Zr₅Si₃, Zr₃Si₂, ZrSi(BTM) та ZrSi₂ утворюються за перитектичними реакціями при 1650, 1925, 2180, 2215, 2210 та 1620°С, відповідно. Для сполук Zr₅Si₄ і ZrSi характерний температурний поліморфізм з фазовими переходами Zr₅Si₄(HTM) \leftrightarrow Zr₅Si₄(BTM) при 1860°С та ZrSi(HTM) \leftrightarrow ZrSi(BTM) при 1460°С. Сполука Zr₅Si₃ існує в обмеженому температурному інтервалі 1745-2180°С. У системі відбуваються два евтектичні перетворення:

 $L \leftrightarrow Zr(BTM) + Zr_3Si (1570^{\circ}C, 91 \text{ at.}\% Zr),$

 $L \leftrightarrow ZrSi_2 + Si (1370^{\circ}C, 10 \text{ at.}\% Zr).$

Рис. 1.3. Діаграма стану системи Zr-Si.

У Zr розчиняється невелика кількість Si: 0,5 ат.% у Zr(HTM) при 863°С і 1 ат.% у Zr(BTM) при 1570°С. Zr не розчиняється у Si.

У системі Hf–Si (рис. 1.4) утворюється п'ять сполук постійного складу [33]. Сполука Hf₃Si₂ утворюється з розплаву при 2480°С. Сполуки Hf₂Si, Hf₅Si₄, HfSi та HfSi₂ утворюються в результаті перитектичних реакцій при 2083, 2320, 2142 та 1543°С, відповідно. Також у літературі є відомості про існування сполуки Hf₅Si₃ [34]. Раніше вважалось, що ця сполука існує лише за умови її стабілізації атомами карбону, нітрогену та оксигену [35,36], однак пізніше було встановлено, що сполука Hf₅Si₃ є окремою бінарною сполукою [37].

У системі Hf-Si відбуваються два евтектичні перетворення:

 $L \leftrightarrow Hf(BTM) + Hf_2Si (1831^{\circ}C, 88 \text{ at.}\% \text{ Hf}),$

 $L \leftrightarrow HfSi_2 + Si (1330^{\circ}C, 9 \text{ at.}\% \text{ Hf}).$

У Нf розчиняється невелика кількість Si: 1,5 ат.% у Hf(HTM) при 1770°С і 1 ат.% у Hf(BTM) при 1831°С. Hf не розчиняється у Si.

Кристалографічні характеристики бінарних сполук систем Zr–Si і Hf–Si наведено в табл. 1.3.

Рис. 1.4. Діаграма стану системи Hf-Si.

33

Сполука	СТ	СП	ПГ	Парам	п:_		
				а	b	С	JI1T.
Zr ₃ Si	Ti ₃ P	<i>tP</i> 32	$P4_2/n$	11,01	_	5,45	[38]
Zr ₂ Si	CuAl ₂	<i>tI</i> 12	I4/mcm	6,581	_	5,372	[32]
Zr ₅ Si ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,886	_	5,558	[32]
Zr ₃ Si ₂	U_3Si_2	<i>tP</i> 10	P4/mbm	7,087	_	3,7060	[39]
Zr ₅ Si ₄	Zr ₅ Si ₄	<i>tP</i> 36	P41212	7,1225	_	1,3000	[40]
ZrSi(HTM)	FeB	oP8	Pnma	6,995	3,786	5,296	[41]
ZrSi(BTM)	TlI	<i>oS</i> 8	Стст	3,764	9,917	3,748	[42]
ZrSi ₂	ZrSi ₂	oS12	Стст	3,72	14,61	3,67	[43]
Hf ₂ Si	CuAl ₂	<i>tI</i> 12	I4/mcm	6,553	_	5,186	[44]
Hf ₅ Si ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,844	_	5,492	[34]
Hf ₃ Si ₂	U ₃ Si ₂	<i>tP</i> 10	P4/mbm	6,988	_	3,675	[34]
Hf ₅ Si ₄	Zr ₅ Si ₄	<i>tP</i> 36	P41212	7,039	_	12,83	[34]
HfSi	FeB	oP8	Pnma	6,889	3,772	5,223	[34]
HfSi ₂	ZrSi ₂	oS12	Стст	3,672	14,57	3,641	[34]

Кристалографічні характеристики сполук систем Zr-Si та Hf-Si

1.2.3. Системи {Zr,Hf}-Ge

Згідно з діаграмою стану системи Zr–Ge (рис. 1.5), у ній існує п'ять сполук постійного складу [45]. Сполука Zr₅Ge₃ утворюється безпосередньо з розплаву при 2330°C, тоді як сполуки Zr₃Ge, ZrGe та ZrGe₂ – за перитектичними реакціями при 1587, 2240 та 1522°C, відповідно. Спосіб і температура утворення сполуки Zr₅Ge₄ не встановлені.

Система Zr-Ge характеризується наявністю двох евтектичних перетворень:

 $L \leftrightarrow Zr(BTM) + Zr_3Ge (1537^{\circ}C, 90 \text{ at.}\% Zr),$

 $L \leftrightarrow ZrGe_2 + Ge (934^{\circ}C, 2 \text{ at.}\% Zr).$

У Zr розчиняється невелика кількість Ge: 1,5 ат.% у Zr(HTM) при 896°С і 1,5 ат.% у Zr(BTM) при 1537°С. Zr не розчиняється у Ge.

На діаграмі стану системи Hf–Ge (рис. 1.6) відображено сім бінарних сполук постійного складу [46]. Сполука Hf₅Ge₃ утворюється безпосередньо з розплаву при 2200°С. Решта сполук, Hf₃Ge, Hf₂Ge, Hf₃Ge₂, Hf₅Ge₄, HfGe i HfGe₂, утворюються за перитектичними реакціями при температурах 1960, 2026, 2160, 2140, 2100 і 1744°С, відповідно. Раніше важалося, що сполука Hf₅Ge₃ є стабільною лише в присутності в ній домішкових атомів карбону [47] чи атомів карбону та оксигену [48]. Додатково, у літературі є інформація про існування сполуки приблизного складу Hf₆Ge₅ [46], а у праці [49] повідомлено, що ця сполука має еквіатомний склад HfGe. Попри згадки про її існування ще в низці праць [48,50], на сьогодні її кристалічна структура залишається не встановленою.

У системі Hf-Ge відбуваються два евтектичні перетворення:

 $L \leftrightarrow Hf(BTM) + Hf_3Ge (1775^{\circ}C, 89 \text{ at.}\% \text{ Zr}),$

 $L \leftrightarrow HfGe_2 + Ge (930^{\circ}C, 2 \text{ at.}\% \text{ Hf}).$

У Нf розчиняється невелика кiлькiсть Ge: 1 aт.% у Hf(HTM) при 1745°C i 1,5 aт.% у Hf(BTM) при 1775°C. Hf не розчиняється у Ge.

Рис. 1.5. Діаграма стану системи Zr-Ge.

Кристалографічні характеристики бінарних сполук систем Zr–Ge і Hf–Ge наведено в табл. 1.4.

Рис. 1.6. Діаграма стану системи Hf-Ge.

Таблиця 1.4

Сполука	СТ	СП	ПГ	Парам	п.		
				а	b	С	J11T.
Zr ₃ Ge	Ti ₃ P	<i>tP</i> 32	$P4_2/n$	11,08	_	5,48	[38]
Zr ₅ Ge ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,99	_	5,54	[45]
Zr ₅ Ge ₄	Zr ₅ Si ₄	<i>tP</i> 36	P41212	7,24	_	13,16	[46]
ZrGe	FeB	oP8	Pnma	7,075	3,904	5,396	[51]
ZrGe ₂	ZrSi ₂	oS12	Стст	3,76	14,97	3,79	[45]
Hf ₃ Ge	Ti ₃ P	<i>tP</i> 32	$P4_2/n$	10,901	_	5,410	[52]
Hf ₂ Ge	CuAl ₂	<i>tI</i> 12	I4/mcm	6,577	_	5,274	[52]
Hf ₅ Ge ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,938	_	5,549	[52]
Hf ₃ Ge ₂	U_3Si_2	<i>tP</i> 10	P4/mbm	7,06	_	3,72	[46]
Hf ₅ Ge ₄	Sm ₅ Ge ₄	oP36	Pnma	6,995	13,389	7,077	[52]
HfGe	FeB	oP8	Pnma	7,066	3,905	5,355	[53]
HfGe ₂	ZrSi ₂	oS12	Стст	3,791	14,863	3,754	[52]

Кристалографічні характеристики сполук систем Zr-Ge та Hf-Ge

1.2.4. Системи {Zr,Hf}-Sn

Система Zr–Sn (рис. 1.7) характеризується існуванням трьох сполук [54]. Сполука змінного складу, позначена на діаграмі стану як Zr₅Sn_{3,2}, утворюється безпосередньо з розплаву при 1983°С, сполука постійного складу ZrSn₂ – у результаті перитектичної реакції при 1143°С, а Zr_{3,2}Sn_{0,8} – у результаті перитектоїдної реакції при 1333°С. При температурах, нижчих за 1500°С фаза Zr₅Sn_{3,2} розпадається на дві сполуки постійного складу – Zr₅Sn₃ і Zr₅Sn₄.

Рис. 1.7. Діаграма стану системи Zr-Sn.

У системі Zr-Sn відбувається два евтектичні перетворення:

 $L \leftrightarrow Zr(BTM) + Hf_5Sn_{3,2}$ (1593°C, 82 at.% Zr),

 $L \leftrightarrow ZrSn_2 + Sn(BTM)$ (230°C, < 1 at.% Zr).

Система Zr–Sn характеризується значною розчинністю Sn в Zr: 7 ат.% у Zr(HTM) при 983°C і 16 ат.% у Zr(BTM) при 1593°C. При 600°C розчинність Sn в Zr(HTM) становить 1,9 ат.%. Zr не розчиняється у Sn.

У системі Hf–Sn (рис. 1.8) утворюється чотири сполуки постійного складу [55]. Сполука Hf₅Sn₃ утворюється з розплаву при 1900°С, а HfSn₂ – за перитектичною реакцією при 1530°С. У літературі відсутні відомості про способи утворення та температурні інтервали існування бінарних станідів HfSn та Hf₅Sn₄.
У системі Hf-Sn відбуваються два евтектичні перетворення:

 $L \leftrightarrow Hf(BTM) + Hf_5Sn_3 (1725^{\circ}C, 80 \text{ at.}\% \text{ Hf}),$

 $L \leftrightarrow HfSn_2 + Sn(BTM)$ (230°C, 1 at.% Hf).

Рис. 1.8. Діаграма стану системи Hf-Sn.

Кристалографічні характеристики бінарних сполук систем Zr–Sn і Hf–Sn наведено в табл. 1.5.

Таблиця 1.5

Сполука	СТ	СП	пг	Парам	Піт		
			111	а	b	С	
Zr _{3,2} Sn _{0,8}	Cr ₃ Si	cP8	Pm-3n	5,625	—	_	[54]
Zr ₅ Sn ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,4576	_	5,7797	[56]
Zr ₅ Sn ₄	Ti ₅ Ga ₄	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,5036	—	5,820	[57]
ZrSn ₂	TiSi ₂	oF24	Fddd	9,573	5,644	9,927	[58]
Hf ₅ Sn ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,385	—	5,723	[59]
$\mathrm{Hf}_5\mathrm{Sn}_4$	Ti ₅ Ga ₄	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,695	_	5,875	[60]
HfSn	FeSi	cP8	<i>P</i> 2 ₁ 3	5,594	—	_	[61]
HfSn ₂	CrSi ₂	hP9	P6 ₂ 22	5,47	_	7,60	[62]

Кристалографічні характеристики сполук систем Zr-Sn та Hf-Sn

1.2.5. Системи {Zr,Hf}-Sb

Діаграма стану системи Zr–Sb (рис. 1.9) побудована частково і на ній відображено чотири бінарні сполуки. Антимонід Zr₅Sb₃ утворюється з розплаву при 1900°С. Способи утворення та температурні межі існування решти сполук не відомі. Крім того, у літературі є відомості про існування та кристалічну структуру сполук Zr₇Sb₄, Zr₅Sb₄, ZrSb (HTM i BTM), Zr₂Sb₃, Zr₁₁Sb₁₈ і поліморфної модифікації ZrSb₂ (BTM).

У системі Zr-Sb відбувається одне евтектичне перетворення:

 $L \leftrightarrow Zr(BTM) + Zr_3Sb (1430^{\circ}C, 83 \text{ at.}\% Zr).$

Система Zr–Sb характеризується значною розчинністю Sb в Zr: 1,5 ат.% у Zr(HTM) при 875°C і 17,5 ат.% у Zr(BTM) при 1430°C. Zr не розчиняється у Sb.

Рис. 1.9. Діаграма стану системи Zr-Sb.

Діаграма стану системи Hf–Sb не побудована. У літературі є відомості про існування п'яти бінарних сполук: Hf₃Sb, Hf₅Sb₃, HfSb, Hf₅Sb₉ та HfSb₂. Для HfSb та HfSb₂ характерний температурний поліморфізм.

Кристалографічні характеристики бінарних сполук систем Zr–Sb і Hf–Sb приведено у табл. 1.6.

Таблиця 1.6

Кристалографічні характеристики сполук систем Zr-Sb та Hf-Sb

C	CT	СП	пр	Парам	п:_		
Сполука	CI	CII	111	а	b	С	JIII.
Zr ₃ Sb	Ni ₃ P	<i>tI</i> 32	<i>I</i> -4	11,35	_	5,67	[38]
Zr ₂ Sb(HTM)	La ₂ Sb	<i>tI</i> 12	I4/mmm	4,1172	_	15,771	[63]
Zr ₂ Sb(BTM)		tP*	<i>P</i> 4	6,497	_	7,871	[64]
7 61		D44		8,4905	11,1557	11,1217	[(5]
Zr ₇ Sb ₄	$(HI_{0,86}I_{10,14})_7SD_4$	<i>mP</i> 44	$\Gamma Z_1/C$	β	3°	[65]	
Zr ₅ Sb ₃ (HTM)	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,465	_	5,806	[66]
Zr ₅ Sb ₃ (BTM)	Y ₅ Bi ₃	oP32	Pnma	7,465	8,801	10,865	[67]
Zr ₅ Sb ₄	Ti ₅ Ga ₄	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,603	_	5,912	[68]
ZrSb(HTM)	ZrSb	<i>oS</i> 24	Стст	3,827	10,426	14,007	[69]
ZrSb(BTM)	FeSi	cP8	<i>P</i> 2 ₁ 3	5,6358	_	_	[63]
Zr ₂ Sb ₃		tP*		9,567	_	5,294	[63]
$Zr_{11}Sb_{18}$	$Zr_{11}Sb_{18}$	<i>tI</i> 116	I-42d	6,7694	_	6,0073	[70]
ZrSb ₂ (HTM)	PbCl ₂	oP12	Pnma	7,393	3,9870	9,581	[63]
ZrSb ₂ (BTM)	TiAs ₂	oP24	Pnnm	14,98	9,94	3,86	[71]
Hf ₃ Sb	Ni ₃ P	<i>tI</i> 32	<i>I</i> -4	11,23	_	5,65	[72]
Hf ₅ Sb ₃	Y ₅ Bi ₃	oP32	Pnma	7,4075	8,718	10,736	[73]
HfSb(HTM)	ZrSb	<i>oS</i> 24	Стст	3,779	10,338	13,842	[74]
HfSb(BTM)	FeSi	cP8	<i>P</i> 2 ₁ 3	5,59	_	_	[75]
Hf ₅ Sb ₉	Hf ₅ Sb ₉	<i>tP</i> 28	<i>P</i> 4/ <i>n</i>	8,7483	_	8,6646	[76]
HfSb ₂ (HTM)	TiAs ₂	oP24	Pnnm	14,96	9,86	3,85	[71]
HfSb ₂ (BTM)	UAs ₂	tP6	P4/nmm	3,916	_	8,678	[77]

1.2.6. Системи Al-{Si,Ge,Sn,Sb}

Система Al–Si (рис. 1.10) характеризується відсутністю бінарних сполук і незначною розчинністю Si в Al: 2 ат.% при 577°С. Al не розчиняється у Si. У системі відбувається одне евтектичне перетворення:

L \leftrightarrow Al + Si при 12,2 ат.% Si та 577°C.

Рис. 1.10. Діаграма стану системи Al-Si.

Діаграма стану системи Al–Ge (рис. 1.11) характеризується відсутністю бінарних сполук, а також незначною розчинністю Ge в Al: 2 ат.% та Al в Ge: 1,8 ат.% при 420°C. У літературі також є відомості про існування матастабільних бінарних фаз Al₆Ge₅, Al_{2,7}Ge_{0,3} і AlGe, кристалографічні характеристики яких приведено у таблиці 1.7. У системі відбувається одне евтектичне перетворення:

L \leftrightarrow Al + Ge при 28,2 ат.% Ge та 420°C.

Рис. 1.11. Діаграма стану системи Al-Ge.

Діаграма стуну системи Al–Sn (рис. 1.12) характеризується відсутністю бінарних сполук і незначною розчинністю Al в Sn: 1,5 ат.% при 220°C, тоді як Sn в Al не розчиняється. У літературі є відомості про існування метастабільної фази Al_{0,5}Sn_{0,5} [78], її кристалографічні характеристики подано у таблиці 1.7. У системі відбувається одне евтектичне перетворення:

L \leftrightarrow Al + Sn(BTM) при 97,6 ат.% Sn та 220°C.

Рис. 1.12. Діаграма стану системи Al-Sn.

Таблиця 1.7

Сполука	СТ	СП	ПГ	Парам	Піт		
	CI	CII	111	а	b	С	
Al ₆ Ge ₅	$Zn_{5,38}Sb_5$	hR66	<i>R</i> -3 <i>c</i>	11,45	—	11,67	[79]
Al _{2,7} Ge _{0,3}	CuAl ₂	<i>tI</i> 12	I4/mcm	6,13	_	4,92	[80]
110	AlGe	taa DQ	D^{2}/c	6,7305	5,8173	8,0427	г 0 11
AIGe		MP 8	PZ_1/C	β	= 147,853	0	[01]
Al _{0,5} Sn _{0,5}	$Hg_{0,1}Sn_{0,9}$	hP1	P6/mmm	3,181	_	2,980	[78]
AlSb(hp1)	ZnTe	<i>oS</i> 8	Стст	5,036	5,397	4,818	[82]
AlSb(hp2)	TlF	oF8	Fmmm	5,391	5,142	5,894	[83]
AlSb	ZnS	cF8	<i>F</i> -43 <i>m</i>	6,091	_	_	[84]

Кристалографічні характеристики сполук системи Al-{Ge,Sn,Sb}

У системі Al–Sb (рис. 1.13) існує одна стабільна бінарна сполука AlSb зі CT ZnS. Вона утворюється безпосередньо з розплаву при 1058°С. Слід зазначити, що у літературі є відомості про існування двох високотискових модифікацій цієї сполуки (hp1 i hp2). Кристалографічні характеристики бінарних сполук системи Al–Sb приведено у табл. 1.7. У системі відбуваються два евтектичні перетворення:

L \leftrightarrow Al + AlSb при 0,4 ат.% Al та 657°C,

L \leftrightarrow Sb + AlSb при 98,5 ат.% Sn та 627°C.

Рис. 1.13. Діаграма стану системи Al-Sb.

1.3. Потрійні системи

У цьому розділі приведено відомості про фазові рівноваги і кристалічну структуру тернарних фаз систем {Ti,Zr,Hf}–Al–{Si,Ge,Sn,Sb}, а також споріднених до них систем {Ti,Zr,Hf}–Al–{Pb,Bi} (ізовалентна заміна *p*-елементів 14 і 15 груп періодичної системи елементів), {Ti,Zr,Hf}–Ga–{Si,Ge,Sn,Sb} (ізовалентна заміна *p*-елементів 13 групи періодичної системи елементів) та {Nb,Ta}–Al–{Si,Ge,Sn,Sb} (заміна *d*-елементів 4 групи на *d*-елементи 5 групи періодичної системи елементів).

1.3.1. Системи {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Pb,Sb,Bi}

З-поміж потрійних систем {Ti,Zr,Hf}–Al–{Si,Ge,Sn,Pb,Sb,Bi} лише для систем Ti–Al–Si та Zr–Al–Si побудовані ізотермічні перерізи діаграм стану у повному концентраційному інтервалі. Системи Ti–Al–{Ge,Sn,Sb} досліджені в обмеженому концентраційному інтервалі. Решту систем досліджували лише на предмет утворення тернарних сполук окремих складів. Відомостей про діаграми стану систем Ti–Al–Bi, Zr–Al–{Ge,Sn,Sb,Bi} і Hf–Al–{Si,Ge,Sn,Sb,Bi} у літературі немає.

Ізотермічні перерізи діаграми стану системи Ti–Al–Si побудовано у повних концентраційних інтервалах при 700 та 1200°С (рис. 1.14) [85]. Вони характеризуються незначною розчинністю Al в бінарних силіцидах титану, тоді як бінаний алюмінід TiAl₃ розчиняє до 15 ат.% Si. Знайдено дві тернарні сполуки змінного складу: (Ti_{0,82-0,87}Al_{0,18-0,13})(Al_{0,12-0,50}Si_{0,88-1,50}) зі CT Zr_{0,75}AlSi_{1,25} і TiAl_{0,3-0,6}Si_{1,7-1,4} зі CT ZrSi₂. Відомо, що тернарна фаза (Ti_{0,82-0,87}Al_{0,18-0,13})× \times (Al_{0,12-0,50}Si_{0,88-1,50}) існує нижче 900°С. Для фази зі структурою типу Zr_{0,75}AlSi_{1,25} також повідомлено склад TiAl_{0,24}Si_{1,76} при 900°С [86]. Додатково, у праці [87] повідомлено про утворення фази Ti₅Al_xSi₃.

Рис. 1.14. Ізотермічні перерізи діаграми стану системи Ті-Al-Si при 700 і 1200°С.

Ізотермічні перерізи діаграми стану системи Zr–Al–Si побудовано у повних концентраційних інтервалах при 700 та 1200°С (рис. 1.15) [88]. Повідомлено про існування трьох тернарних сполук: ZrAl_{2,7-2,4}Si_{0,3-0,6} [89,90], Zr_{0,75}AlSi_{1,25} [90] і ZrAl_{0,20-0,25}Si_{0,80-0,75} [89]. При 700°С утворюються протяжні тверді розчини заміщення на основі бінарних сполук ZrSi₂, ZrSi та Zr₅Si₄, а при 1200°С на основі сполуки Zr₅Al₃. Також при 1200°С між ізоструктурними сполуками Zr₂Al i Zr₂Si (CT CuAl₂) утворюється НРТР.

Рис. 1.15. Ізотермічні перерізи діаграми стану системи Zr-Al-Si при 700 і 1200°С.

Систему Hf–Al–Si досліджували лише на предмет утворення окремих тернарних сполук і твердих розчинів на основі бінарних фаз. Встановлено існування двох тернарних сполук, $Hf_5Al_{2,55-1,5}Si_{0,45-1,5}$ та $HfAl_{0,5}Si_{0,5}$, HPTP $Hf_2Al_{1-0}Si_{0-1}$ і твердих розчинів заміщення на основі бінарних сполук $HfAl_3$, Hf_3Si_2 і $HfSi_2$ при 1200°C.

Ізотермічні перерізи діаграми стану системи Ті–Al–Ge при 400, 520 та 1000°C представлені на рис. 1.16 [91]. На основі бінарних сполук TiAl₃ та TiGe₂ утворюються тверді розчини заміщення, протяжністю до 13 ат.% Ge i 4 ат.% Al, відповідно. При 400 і 520°C існує три тернарні сполуки: TiAl₃Ge, TiAl_{0,27-0,39}Ge_{1,73-1,61} і TiAl_{0,41-0,64}Ge_{1,59-1,36}. На ізотермічному перерізі діаграми стану при 1000°C тернарні сполуки відсутні.

Про діаграму стану чи кристалічні структури тернарних сполук у системі Zr–Al–Ge відомості відсутні, а у системі Hf–Al–Ge знайдено тернарну сполуку HfAl_{0,33}Ge_{1,67} [92].

Рис. 1.16. Ізотермічні перерізи діаграми стану системи Ti–Al–Ge при 400°С (*a*), 520°С (*б*) і 1000°С (*в*).

Ізотермічний переріз діаграми стану системи Ti–Al–Sn побудовано при 900°C в області 33,3-100 ат.% Ті [93] (рис. 1.17). Повідомлено про існування і кристалічну структуру однієї тернарної сполуки, Ti₅AlSn₂ [94]. Встановлено утворення твердих

розчинів заміщення на основі бінарних сполук Ti_6Sn_5 і Ti_5Sn_3 та НРТР між ізоструктрурними бінарними сполуками Ti_3Sn та Ti_3Al (CT Mg₃Cd).

У системах {Zr,Hf}–Al–Sn повідомлено про існування та кристалічну структуру тернарних фаз Zr₅AlSn₃ [95], Zr₅AlSn₂ та Hf₅AlSn₂ [94].

Рис. 1.17. Ізотермічний переріз діаграми стану системи Ti–Al–Sn при 900°С.

У системах {Ti,Zr,Hf}–Al–Pb повідомлено про існування ізоструктурних тернарних сполук T_5 AlPb₂ (T = Ti, Zr, Hf) [94].

Ізотермічний переріз діаграми стану потрійної системи Ti–Al–Sb побудовано при 1100°C в багатій на Ti області (> 50 ат.%) (рис. 1.18) [96]. Повідомлено про існування однієї тернарної сполуки змінного складу Ti₅(Al,Sb)₃, однак область гомогенності для неї не встановлено. У системі Zr–Al–Sb повідомлено про існування тернарних фаз Zr₅AlSb₃ [97] та Zr₅Al_{0,8}Sb_{2,2} [98], а у системі Hf–Al–Sb – тернарних сполук Hf₅Al_{1,56-0,86}Sb_{1,44-2,14} та Hf₅Al_{2,30}Sb_{0,70} [99].

У літературі відсутні відомості про діаграми стану чи кристалічні структури тернарних фаз ситем {Ti,Zr,Hf}–Al–Bi.

Кристалографічні характеристики тернарних фаз систем {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Pb,Sb} наведено в табл. 1.8.

Рис. 1.18. Ізотермічний переріз діаграми стану системи Ті–Al–Sb при 1100°С.

Таблиця 1.8

Кристалографічні характеристики тернарних фаз

систем {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Pb,Sb}

Споти	СТ	СП	пг	Парам	Піт		
Сполука	CI	CII	111	а	b	С	
1	2	3	4	5	6	7	8
TiAl _{2,4} Si _{0,6}	TiAl ₃	tI8	I4/mmm	3,78	_	8,52	[85]
Ti _{0,87} Al _{0,63} Si _{1,5}	Zr _{0,75} AlSi _{1,25}	<i>tI</i> 24	$I4_1/amd$	3,57	—	27,15	[85]
TiAl _{0,24} Si _{1,76}	Zr _{0,75} AlSi _{1,25}	<i>tI</i> 24	$I4_1/amd$	3,5788	—	27,132	[86]
TiAl _{0,5} Si _{1,5}	ZrSi ₂	oS12	Стст	3,18	13,52	3,618	[85]
Ti ₅ Al _x Si ₃	Mn ₅ Si ₃	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,6281	—	5,271 ¹	[87]
ZrAl _{2,7-2,4} Si _{0,3-0,6}	TiAl ₃	tI8	I4/mmm	3,904- 3,920	_	9,008- 8,938	[89, 90]
Zr _{0,75} AlSi _{1,25}	Zr _{0,75} AlSi _{1,25}	<i>tI</i> 24	$I4_1/amd$	3,71	_	29,35	[90]
ZrAl _{0,2} Si _{0,8}	TlI	oS8	Стст	3,762	9,912	3,754	[89]
$Zr_5Al_{2,4}Si_{0,6}$	Mr Si	hD16	D6 /m om	8,146	—	5,671	[88]
$Zr_5Al_{1,5}Si_{1,5}$	11115313	<i>nr</i> 10	F 03/MCM	8,076	_	5,664	[100]
Zr _{2,1} Al _{0,3} Si _{0,6}	CuAl ₂	<i>tI</i> 12	I4/mcm	6,665	_	5,397	[19]

(виділено тверді розчини на основі бінарних сполук)

Закінчення таблиці 1.8

1	2	3	4	5	6	7	8
HfAl _{2,55} Si _{0,45}	TiAl ₃	tI8	I4/mmm	5,508		8,939	[100]
HfAl _{0,3} Si _{1,7}	ZrSi ₂	oS12	Стст	3,711		3,667	[100]
HfAl _{0,5} Si _{0,5}	TlI	oS8	Стст	3,714	9,89	3,754	[89]
$Hf_3Al_{0,5}Si_{1,5}$	U_3Si_2	<i>tP</i> 10	P4/mbm	7,072		3,636	[100]
$Hf_{5}Al_{1,5}Si_{1,5}$	Mn_5Si_3	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	7,957	_	5,559	[100]
$Hf_{1,95}Al_{0,9}Si_{0,15}$	CuAl ₂	<i>tI</i> 12	I4/mcm	6,587	—	5,198	[19]
TiAl ₃ Ge	TiAl ₃ Ge	<i>tP</i> 10	P4/nmm	3,8713	_	10,8830	[91]
TiAl _{2,7} Ge _{0,3}	TiAl ₃	tI8	I4/mmm	3,8390		8,6305	[91]
TiAl _{0,41} Ge _{1,59}	ScCo _{0,25} Si _{1,75}	oS12	Стст	3,6912	14,0550	3,6990	[91]
TiAl _{0,29} Ge _{1,71}	TiAl _{0,29} Ge _{1,71}	<i>tI</i> 24	$I4_1/amd$	3,6959	ĺ	28,345	[91]
TiAl _{0,13} Ge _{1,87}	TiSi ₂	oF24	Fddd	5,031	8,615	8,804	[91]
Ti _{1,07} Al _{0,89} Ge _{0,04}	CuAu	tP2	P4/mmm	2,8087	_	4,0398	[91]
Ti ₆ Al _{0,27} Ge _{4,73}	V_6Si_5	<i>oI</i> 44	Ibam	7,9470	16,9323	5,2336	[91]
Ti ₅ Al _{0,76} Ge _{2,24}	Mn_5Si_3	<i>hP</i> 16	$P6_3/mcm$	7,5886		5,2390	[91]
HfAl _{0,33} Ge _{1,67}	ZrSi ₂	oS12	Стст	3,7935	14,879	3,7558	[92]
Ti ₅ AlSn ₂	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	10,549	_	5,242	[94]
Zr ₅ AlSn ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,655	_	5,871	[95]
Zr ₅ AlSn ₂	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	11,181	_	5,538	[94]
Hf ₅ AlSn ₂	W_5Si_3	<i>tI</i> 32	I4/mcm	11,014	_	5,542	[94]
Ti ₅ AlPb ₂	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	10,659	_	5,318	[94]
Zr ₅ AlPb ₂	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	11,209		5,524	[94]
Hf ₅ AlPb ₂	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	11,045	_	5,543	[94]
$Ti_5Al_{1,3}Sb_{1,7}$	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	10,346	_	5,152	[96]
Zr ₅ AlSb ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,5802		5,8465	[97]
$Zr_5Al_{0,8}Sb_{2,2}$	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	11,100		5,553	[98]
Zr ₅ Al _{0-2,61} Sb _{3-0,39}	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	8,378 ²	—	5,730 ²	[101]
Hf ₅ Al _{2,30} Sb _{0,70}	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	8,1442	_	5,6566	[99]
$ \begin{array}{c} Hf_{5}Al_{1,560,86}\times \\ \times Sb_{1,442,14} \end{array} $	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	10,8955 ³	_	5,5101 ³	[99]

Примітки: ¹ в літературі не вказаний склад, для якого визначені параметри комірки; ² для складу $Zr_5Al_{1,5}Sb_{1,5}$; ³ для складу $Hf_5Al_{1,56}Sb_{1,44}$.

1.3.2. Системи {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb}

Серед систем {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb} лише для систем Hf-Ga-{Si,Ge,Sn,Sb} побудовані діаграми стану в повних концентраційних інтервалах, {Ti,Zr,Hf}-Ga-Si – в часткових інтервалах.

Ізотермічний переріз діаграми стану системи Ті–Gа–Si побудовано в області 33,3-100 ат.% Ті при 800°С (рис. 1.19*a*) [102]. Встановлено існування однієї тернарної сполуки, ТіGa_{0,68-0,20}Si_{1,32-1,80}, та твердого розчину заміщення на основі бінарної сполуки Ti₅Si₃. Крім того, у працях [103-105] приведено ізотермічний переріз діаграми стану в області 62,5-100 ат.% Ті при 1350°С (рис. 1.19*б*).

Рис. 1.19. Ізотермічні перерізи діаграми стану системи Ті–Ga–Si: в області 33,3-100 ат.% Ті при 800°С (*a*) та в області 62,5-100 ат.% Ті при 1350°С (б).

Ізотермічний переріз діаграми стану системи Zr–Ga–Si побудовано при 800°C в області 33,3-100 ат.% Zr (рис. 1.20) [102]. Встановлено утворення твердих розчинів заміщення різної протяжності на основі бінарних сполук Zr₃Ga₂, Zr₅Ga₃, Zr₂Ga, ZrSi₂, ZrSi, Zr₅Si₄, Zr₃Si₂, Zr₅Si₃ і Zr₂Si. У системі знайдено одну тернарну сполуку змінного складу, ZrGa_{0,90-0,66}Si_{0,10-0,34}. У праці [106] повідомлено, що ця тернарна сполука є частиною твердого розчину на основі високотемпературної модифікації бінарної сполуки ZrGa (CT TII). Ізотермічний переріз діаграми стану системи Hf–Ga–Si побудовано в повному концентраційному інтервалі при 600°С (рис. 1.21) [107]. У системі утворюється одна тернарна сполука постійного складу HfGa_{0,33}Si_{0,67} [108]. Особливістю системи є утворення HPTP на основі бінарних сполук Hf₅Ga₃ i Hf₅Si₃ (CT Mn₅Si₃) та Hf₂Ga i Hf₂Si (CT CuAl₂).

Рис. 1.20. Ізотермічний переріз діаграми стану системи Zr-Ga-Si при 800°С.

Рис. 1.21. Ізотермічний переріз діаграми стану системи Hf-Ga-Si при 600°С.

Усистемі Ті–Gа–Ge відомо про існування та кристалічну структуру тернарних фаз ТіGa_{0,5}Ge_{1,5} та Ті₅Ga_{1,5}Ge_{1,5} [109]. Друга фаза, мабуть, є частиною твердого розчину заміщення на основі бінарної сполуки Ті₅Ge₃.

У системі Zr–Ga–Ge повідомлено про існування тернарних фаз ZrGa_{2,75}Ge_{0,25} [109], Zr_{0,75}Ga_{0,9}Ge_{1,35} [109], ZrGa_{0,5}Ge_{1,5} [18] і ZrGa_{0,1}Ge_{0,9} [5]. Zr_{0,75}Ga_{0,9}Ge_{1,35} і ZrGa_{0,5}Ge_{1,5}, мабуть, належать до області гомогенності однієї фази.

Ізотермічний переріз діаграми стану потрійної системи Hf–Ga–Ge побудовано при 600°C в повному концентраційному інтервалі (рис. 1.22) [110]. У системі утворюється одна тернарна сполука змінного складу HfGa_{0,82-0,67}Ge_{1,18-1,33}. Між ізоструктурними бінарними сполуками Hf₅Ga₃ і Hf₅Ge₃ (CT Mn₅Si₃) та Hf₂Ga і Hf₂Ge (CT CuAl₂) утворюються HPTP [110,111].

Рис. 1.22. Ізотермічний переріз діаграми стану системи Hf-Ga-Ge при 600°С.

У системі Zr–Ga–Sn відомо про існування двох тернарних фаз з визначеними кристалічними структурами $Zr_5Ga_{0,52}Sn_{2,48}$ [112] і Zr_5GaSn_3 [95]. Фаза $Zr_5Ga_{0,52}Sn_{2,48}$ є індивідуальною тернарною сполукою, тоді як природу фази складу Zr_5GaSn_3 не встановлено.

Система Hf-Ga-Sn досліджена в повному концентраційному інтервалі при 600°С (рис. 1.23) [113]. У системі утворюється одна тернарна сполука змінного

складу $Hf_5Ga_{1,24-0,52}Sn_{1,76-2,48}$. На основі бінарних сполук HfGa (CT ThIn) та Hf_5Ga_3 (CT Mn_5Si_3) утворюються тверді розчини заміщення, а на основі бінарної сполуки Hf_5Sn_3 (CT Mn_5Si_3) утворюється твердий розчин включення $Hf_5Ga_xSn_3$ (x = 0-1) [114].

Для системи Ti–Ga–Sb є повідомлено про утворення тернарної сполуки Ti₅GaSb₂ [98], а також твердого розчину заміщення на основі бінарного галіду Ti₅Ga₃ зі структурою типу Mn₅Si₃ [101].

У системі Zr–Ga–Sb знайдено тернарну сполуку Zr₅Ga_{0,8}Sb_{2,2} при 400°С [98], а також встановлено утворення НРТР Zr₅Ga₀₋₃Sb₃₋₀ при 1000°С [101].

Рис. 1.23. Ізотермічний переріз діаграми стану системи Hf-Ga-Sn при 600°С.

Ізотермічний переріз діаграми стану системи Hf–Ga–Sb побудований при 600°C (рис. 1.24) [115]. У системі утворюються чотири тернарні сполуки: Hf₂GaSb₃, HfGa_{0,1}Sb_{0,9}, Hf₅GaSb₃, Hf₅Ga_{1,84-0,72}Sb_{1,16-2,28}. На основі бінарних сполук HfGa (CT ThIn), Hf₅Ga₃ (CT Mn₅Si₃) та Hf₅Sb₃ (CT Y₅Bi₃) утворюються тверді розчини заміщення різної протяжності.

Кристалографічні характеристики тернарних фаз систем {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb} наведено в табл. 1.9.

Рис. 1.24. Ізотермічний переріз діаграми стану системи Hf-Ga-Sb при 600°С.

Таблиця 1.9

Кристалографічні характеристики тернарних сполук систем {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb}

(виділено тверді розчини на основі бінарних сполук)

Casaaa	СТ СП		пг	Парам	πίπ			
Сполука	CI	CII	111	а	b	С] JIIT.	
1	2	3	4	5	6	7	8	
$TiGa_{0,68-0,20} \times \\ \times Si_{1,32-1,80}$	ZrSi ₂	oS12	Стст	3,5841	13,606 ¹	3,584 ¹	[102]	
Ti ₅ Ga _{0-1,90} × ×Si _{3-1,10}	Mn ₅ Si ₃	hP16	P6 ₃ /mcm	7,505 ²	_	5,1942 ²	[105]	
ZrGa _{0,90-0,66} × ×Si _{0,10-0,34}	TlI	oS8	Стст	3,908 ³	10,197 ³	3,824 ³	[102]	
HfGa _{0,33} Si _{0,67}	TlI	oS8	Стст	3,7338	9,889	3,7441	[108]	
TiGa _{0,5} Ge _{1,5}	ZrSi ₂	oS12	Стст	3,69	14,09	3,67	[109]	
Ti ₅ Ga _{1,5} Ge _{1,5}	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	7,5	—	5,2	[109]	
ZrGa _{2,75} Ge _{0,25}	TiAl ₃	tI8	I4/mmm	3,89	_	9,1	[109]	
Zr _{0,75} Ga _{0,9} Ge _{1,35}	ZrSi ₂	oS12	Стст	3,82	14,98	3,79	[109]	
ZrGa _{0,5} Ge _{1,5}	ZrSi ₂	oS12	Стст	3,804	14,975	3,765	[18]	
ZrGa _{0,1} Ge _{0,9}	TlI	oS8	Стст	3,83	10,12	3,83	[38]	

n ·	• •	1 (1
Закінчення	таюлиш	1.4	J
	тасынці	I • >	^

1	2	3	4	5	6	7	8
HfGa _{0,82-0,67} × ×Ge _{1,18-1,33}	ZrSi ₂	oS12	Стст	3,80714	14,6270 ⁴	3,7850 ⁴	[110]
Zr ₅ GaSn ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	$P6_3/mcm$	8,6599		5,8794	[95]
$Zr_5Ga_{0,52}Sn_{2,48}$	Nb ₅ Sn ₂ Si	<i>tI</i> 32	I4/mcm	11,1656	_	5,5545	[112]
$Hf_{3}Ga_{1,97}Sn_{1,03}$	Hf ₃ Ga ₂ Sn	oP24	Pbcm	9,337	8,692	5,665	[116]
Hf ₅ GaSn ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	P6 ₃ /mcm	8,5564	—	5,7859	[114]
$ \begin{array}{c} Hf_{5}Ga_{1,24\text{-}0,52}\times\\ \times Sn_{1,76\text{-}2,48} \end{array} $	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	11,00425	_	5.55987 ⁵	[113]
Ti ₅ Ga _{3-1,5} Sb _{0-1,5}	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	7,7836	_	5,3456	[101]
Ti ₅ GaSb ₂	W_5Si_3	<i>tI</i> 32	I4/mcm	10,642		5,327	[98]
$Zr_5Ga_{0,8}Sb_{2,2}$	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	11,073	_	5,541	[98]
$Zr_5Ga_{0-3}Sb_{3-0}$	Mn ₅ Si ₃	<i>hP</i> 16	P6 ₃ /mcm	8,2487		5,6967	[101]
Hf ₂ GaSb ₃	Zr ₂ CuSb ₃	tP6	<i>P</i> -4 <i>m</i> 2	3,89841	_	8,62650	[117]
HfGa _{0,1} Sb _{0,9}	FeSi	cP8	<i>P</i> 2 ₁ 3	5,5752	_	_	[115]
Hf ₅ GaSb ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	P6 ₃ /mcm	8,4747	-	5,7190	[115]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	10,849728	_	5,50154 ⁸	[115]

Примітки: ¹для складу TiGa_{0,3}Si_{1,7}; ²для складуTi₅Ga_{1,25}Si_{1,75}; ³для складу ZrGa_{0,8}Si_{0,2}; ⁴для складу HfGa_{0,67}Ge_{1,33}; ⁵для складу Hf₅Ga_{0,60}Sn_{2,40}; ⁶для складу Ti₅Ga_{1,5}Sb_{1,5}; ⁷для складу Zr₅Ga_{1,5}Sb_{1,5}; ⁸для складу Hf₅Ga_{1,5}Sb_{1,5}.

1.3.3. Системи {Nb,Ta}-Al-{Si,Ge,Sn,Sb}

Серед систем {Nb,Ta}–Al–{Si,Ge,Sn,Sb} лише для систем Nb–Al–Si та Ta–Al–Si побудовані ізотермічні перерізи діаграм стану при 1400°С. Системи Nb–Al–{Ge,Sn,Sb} досліджували на предмет утворення тернарних сполук і твердих розчинів на основі бінарних сполук. У літературі відсутні відомості про взаємодію компонентів у системах Ta–Al–{Ge,Sn,Sb}.

У потрійній системі Nb–Al–Si при 1400°С (рис. 1.25) [118] встановлено існування двох тернарних сполук: NbAl_{0,6}Si_{1,4} [119] і Nb₅Al_{1,5}Si_{1,5} [118].

Рис. 1.25. Ізотермічний переріз діаграми стану системи Nb-Al-Si при 1400°С.

Ізотермічний переріз діаграми стану потрійної системи Ta–Al–Si побудовано при 1400°C в повному концентраційному інтервалі (рис. 1.26) [120]. Встановлено утворення твердих розчинів на основі трьох бінарних сполук: TaSi₂ (CT CrSi₂), Ta₅Si₃ (CT Cr₅B₃) і Ta₂Si (CT CuAl₂) протяжністю 21, 17 і 10 ат.% Al, відповідно. Тернарних сполук не знайдено.

Рис. 1.26. Ізотермічний переріз діаграми стану системи Та-Al-Si при 1400°С.

У системі Nb–Al–Ge повідомлено про існування і кристалічну структуру тернарної фази сполуки Nb₃Al_{0,5}Ge_{0,5} [121].

У системі Nb–Al–Sn встановлено утворення НРТР між ізоструктурними бінарними сполуками Nb₃Al та Nb₃Sn (CT Cr₃Si) [122] і тернарної сполуки сполуки Nb₅AlSn₂ [94]. НРТР зі структурою типу Cr₃Si також утворюється між ізоструктурними бінарними сполуками Nb₃Al та Nb₃Sb у системі Nb–Al–Sb [101].

Кристалографічні характеристики тернарних фаз систем {Nb,Ta}–Al– {Si,Ge,Sn,Sb} наведено в табл. 1.10.

Таблиця 1.10

Кристалографічні характеристики тернарних сполук

систем {Nb,Ta}-Al-{Si,Ge,Sn,Sb}

Споти	СТ СП		пг	Парам	Πίπ		
Сполука	CI	CII	111	а	b	С	JIII.
NbAl _{0-0,28} Si _{2-1,72}	CrSi ₂	hP9	P6 ₂ 22	4, 81 ¹	_	6,64 ¹	[119]
NbAl _{0,6} Si _{1,4}	TiSi ₂	oF24	Fddd	8,403	4,901	8,794	[119]
Nb ₅ Al _{1,5} Si _{1,5}	W ₅ Si ₃	<i>tI</i> 32	I4/mcm	10,160	_	5,081	[118]
Nb ₃ Al _{1-0,5} Si _{0-0,5}	Cr ₃ Si	cP8	Pm-3n	5,17 ²	_	_	[123]
TaAl _{0-0,9} Si _{2-1,1}	CrSi ₂	hP9	P6 ₂ 22	4,810 ³	_	6,648 ³	[120]
Ta ₅ Al _{0-1,41} Si _{3-1,59}	Cr ₅ B ₃	<i>tI</i> 32	I4/mcm	6,563 ⁴	_	11,991 ⁴	[120]
Ta ₂ Al _{0-0,3} Si _{1-0,7}	CuAl ₂	<i>tI</i> 12	I4/mcm	6,190 ⁵	_	5,058 ⁵	[120]
Nb ₃ Al _{0,5} Ge _{0,5}	Cr ₃ Si	cP8	Pm-3n	5,173	_	_	[121]
Nb ₅ AlSn ₂	Nb ₅ SiSn ₂	<i>tI</i> 32	I4/mcm	10,629	_	5,216	[94]
Nb ₃ Al ₀₋₁ Sn ₁₋₀	Cr ₃ Si	cP8	Pm-3n	5,255 ⁶	_	_	[122]
Nb ₃ Al ₁₋₀ Sb ₀₋₁	Cr ₃ Si	cP8	Pm-3n	5,223 ⁷	_	_	[101]
	склалу М	Alasii	- ² лпя	склалу	Nb2Alo5Sio	с ³ лпя (склалу

(виділено тверді розчини на основі бінарних сполук)

Примітки: ¹для складу NbAl_{0,3}Si_{1,7}; ²для складу Nb₃Al_{0,5}Si_{0,5}; ³для складу TaAl_{0,9}Si_{1,1}; ⁴для складу Ta₅Al_{1,59}Si_{1,41}; ⁵Ta₂Al_{0,3}Si_{0,7}; ⁶для складу Nb₃Al_{0,5}Sn_{0,5}; ⁷для складу Nb₃Al_{0,5}Sb_{0,5}.

1.4. Висновки з огляду літератури. Обґрунтування вибору об'єктів дослідження

Компоненти потрійних систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} відрізняються за фізико-хімічними властивостями (температури топлення і кипіння, густина речовин, розміри, електронегативність атомів), що, очевидно, матиме вплив на їхню взаємодію. Цирконій і гафній є *d*-металами 4 групи періодичної системи елементів і характеризуються однаковою будовою зовнішнього електронного рівня (4d²5s² і 5d²6s², відповідно), що, мабуть, проявиться у подібності діаграм стану систем за участю Zr i Hf та однаковими парами *p*-елементів. Si, Ge i Sn є р-елементами 14 групи і, відповідно, також характеризуються однаковою будовою зовнішнього електронного рівня ($3s^23p^2$, $4s^24p^2$ і $5s^25p^2$, відповідно), однак електронегативністю, відрізняються за розмірами атомів, густиною, температурами топлення і кипіння. Таким чином, дослідження різних потрійних систем за участю цих компонентів дасть можливість прослідкувати зміну характеру взаємодії компонентів при переході від Si (металоїд) до Sn (метал). Заміна Sn на Sb у потрійних системах уможливить аналіз зміни характеру фазових рівноваг у відповідних потрійних системах при переході від *p*-елемента 14 групи (Sn) до *p*-елемента 15 групи (Sb) періодичної системи елементів, тобто при зміні конфігурації зовнішнього електронного рівня третього компонента від $5s^25p^2$ до $5s^25p^3$. З огляду на кристалографічні характеристики компонентів потрійних систем $\{Zr, Hf\}$ -Al- $\{Si, Ge, Sn, Sb\}$ простежується як їхня закономірна схожість так і деякі характерні особливості. Так, при температурі 600°С кристалічні структури цирконію та гафнію належать до структурного типу Mg, алюміню – до CT Cu, кремнію та ґерманію – до СТ С(алмаз), олова – до власного типу структури, а стибію – до СТ As. Це дозволяє зробити припущення, що характер взаємодії компонентів у потрійних системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb} з Si та Ge буде найбільш схожим між собою і в той же час буде відмінним від характеру взаємодії компонентів у системах з Sn та Sb. Системи з різними *d*-металами, очевидно, будуть попарно подібними між собою.

Подвійні системи, що обмежують досліджувані потрійні системи, вивчені досить повно. Для більшості з них побудовані діаграми стану, кристалічні структури бінарних сполук встановлені. В результаті аналізу взаємодії компонентів у подвійних системах, видно, що є суттєва відмінність діаграм стану систем з d-елементами, {Zr,Hf}-{Al,Si,Ge,Sn,Sb}, від систем, які містять лише p-елементи, Al-{Si,Ge,Sn,Sb}. Для першої групи подвійних систем характерним є утворення різної кількості бінарних сполук (від 3 у системі Zr–Sn до 10 у системі Zr–Al), тоді як серед чотирьох систем другої групи лише у системі зі Sb утворюється бінарна сполука. Така відмінність, вочевидь, призведе до відмінностей у характері взаємодії трьох компонентів.

У результаті узагальнення та систематизації літературних відомостей про кристалічні структури бінарних сполук, встановлено, що структури більшості сполук *d*-елементів з Al належать до гексагональної та тетрагональної сингоній (по вісім сполук у системах Zr–Al і Hf–Al, відповідно), структури чотирьох сполук до ромбічної та однієї сполуки – до кубічної сингоній. У системах *d*-елементів з Si, Ge, Sn та Sb структури найбільшої кількості сполук належать до ромбічної сингонії (18 сполук), а також 12 сполук – до тетрагональної, 11 сполук – до гексагональної, чотирьох сполук – до кубічної та однієї сполуки – до моноклінної сингонії. Кристалічна структура єдиної бінарної сполуки з двома *p*-елементами, AlSb, належить до кубічної сингонії. При температурі 600°C всі бінарні сполуки характеризуються постійними складами. Для деяких бінарних сполук характерний температурний поліморфізм. Це може привести до утворення тернарних фаз у досліджуваних системах при 600°C, шляхом стабілізації третім компонентом поліморфних модифікацій бінарних сполук, що існують при температурах, відмінних від температури дослідження.

У кожній з потрійних систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} серед бінарних сполук цирконію чи гафнію є пари ізостехіометричних сполук, однак ізоструктурними є лише пари сполук Hf₂Al–Hf₂Si і Hf₂Al–Hf₂Ge (CT CuAl₂). Отже, очікувати утворення HPTP можна лише у системах Hf–Al–Si і Hf–Al–Ge між зазначеними сполуками. З огляду на постійний склад бінарних сполук систем

 ${Zr,Hf}-{Al,Si,Ge,Sn,Sb},$ а також взаємну розчинність *p*-елементів у подвійних системах Al-{Si,Ge,Sn,Sb}, можна спрогнозувати утворення обмежених твердих розчинів заміщення на основі бінарних сполук при сталому вмісті Zr чи Hf. Тернарні сполуки систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} характеризуватимуться постійним складом чи невеликими областями гомогенності вздовж ізоконцентрат Zr i Hf.

Аналізуючи літературні відомості про взаємодію компонентів у споріднених до досліджуваних потрійних системах, ми розглянули такі групи систем: {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Sb} – досліджувані у дисертаційній роботі системи і споріднені до них системи з титаном; {Ti,Zr,Hf}-Al-{Pb,Bi} – системи d-металів групи титану з алюмінієм і р-елементами 14 і 15 груп періодичної системи елементів – для визначення впливу ізовалентної заміни *p*-елементів на характер взаємодії компонентів; {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb} – системи *d*-металів підгрупи титану з галієм і *p*-елементами 14 і 15 груп – для визначення впливу ізовалентної 13 взаємодії заміни р-елементів групи характер компонентів; на ${Nb,Ta}-Al-{Si,Ge,Sn,Sb}$ – для визначення впливу заміни *d*-елемента на характер взаємодії компонентів.

Із літературних відомостей про взаємодію компонентів у потрійних системах ${Ti,Zr,Hf}-Al-{Si,Ge,Sn,Pb,Sb,Bi}$ можна зробити низку висновків. З-поміж досліджуваних у дисертаційній роботі систем, лише для системи Zr–Al–Si побудовано ізотермічний переріз діаграми стану, однак при інших температурах – 700 і 1200°С. Слід зазначити, що відповідні перерізи суттєво відрізняються між собою як за кількістю та стехіометрією тернарних сполук, протяжностями твердих розчинів на основі бінарних сполук, так і за фазовими рівновагами, що вказує на суттєвий вплив температури на характер взаємодії компонентів. Таким чином, можна констатувати, що з огляду на існування бінарних сполук з різною стехіометрією, чи кристалічною структурою при різних температурах, здійснення систематичних досліджень взаємодії компонентів у різних системах при одній температурі є необхідною умовою коректності аналізу і висновків щодо взаємодії компонентів. Загалом, у системах ${Zr,Hf}-Al-{Si,Ge,Sn,Sb}$ встановлено існування 11 тернарних сполук і 9 твердих розчинів на основі бінарних розчинів на основі бінарних розчинів на основі бінарних у системах ${Zr,Hf}$ -Al- ${Si,Ge,Sn,Sb}$ встановлено існування 11 тернарних сполук і 9 твердих розчинів на основі бінарних сполук при різних

температурах. Для більшості цих фаз не визначено параметрів кристалічної структури, а лише встановлено структурний тип і параметри елементарної комірки. Крім того, для окремих фаз не визначено їхню природу (індивідуальні тернарні сполуки чи склади з областей твердих розчинів заміщення чи включення на основі бінарних сполук). В результаті аналізу кристалічних структур усіх тернарних фаз (22 сполуки і 16 твердих розчинів) у системах {Ti,Zr,Hf}–Al–{Si,Ge,Sn,Pb,Sb,Bi}, спостережено, що більшість з них належить до тетрагональної сингонії (22 фаз), а також до ромбічної (8 фаз) та гексагональної (8 фаз) сингоній. Найбільшою кількістю представників характеризується структурний тип W_5Si_3 (п'ять сполук) і його тернарний варіант Nb₅SiSn₂ (чотири сполуки).

Серед систем {Ti,Zr,Hf}–Ga–{Si,Ge,Sn,Sb} ізотермічні перерізи діаграм стану побудовані в повних концентраційних інтервалах для систем Hf–Ga–{Si,Ge,Sn,Sb} і в часткових – для систем {Ti,Zr}–Ga–Si. Решта систем досліджували лише на предмет утворення тернарних сполук окремих складів, або або відомості про такі системи у літературі відсутні.

На ізотермічних перерізах діаграм стану систем Hf–Ga–{Si,Ge,Sn,Sb} при 600°С можна виділити області, подібні за характером взаємодії компонентів. Область з вмістом від 0 до 50 ат.% Hf характеризується відсутністю значної розчинності третього компонента в бінарних сполуках. В області з вмістом від 50 до 100 ат.% Hf спостерігається утворення твердих розчинів різної протяжності на основі бінарних сполук, в тому числі HPTP між ізоструктурними бінарними сполуками. Системи Hf–Ga–{Si,Ge,Sn,Sb} подібні попарно. У системах Hf–Ga–{Si,Ge} утворюється по одній тернарній сполуці та по два HPTP. Кожна тернарна сполука домінує в утворенні рівноваг. У системах Hf–Ga–{Sn,Sb} подібності спостерігаються в області великого вмісту Hf. Перерізи Hf₃Ga₃–Hf₅Sn₃ та Hf₃Ga₃–Hf₅Sb₃ є квазібінарними системами з твердими розчинами заміщення значної протяжності на основі сполуки Hf₅Ga₃ (CT Mn₅Si₃) та тернарними сполуками зі CT Nb₅SiSn₂ з великими областями гомогенності вздовж ізоконцентрат 62,5 ат.% Hf. У системі Hf–Ga–Sn на основі сполуки Hf₅GaSn₃, а у системі Hf–Ga–Sb на основі сполуки Hf₅Sb₃ існує твердий розчин заміщення незначної протяжності, а при складі Hf₅GaSb₃ утворюється тернарна сполука, ізоструктурна до Hf₅GaSn₃ (CT Hf₅CuSn₃).

У системах {Ti,Zr,Hf}–Ga–{Si,Ge,Sn,Sb} утворюється відносно невелика кількість сполук, максимально – чотири у системі Hf–Ga–Sb. Кристалічні структури тернарних фаз належать до ромбічної (9), тетрагональної (7), гексагональної (7) та кубічної (1) сингоній. Найчастіше реалізуються структурні типи ZrSi₂ (для 5 фаз), Nb₅SiSn₂ (4), Mn₅Si₃ (4), TlI (3) та Hf₅CuSn₃ (3). Спостерігається подібність з кристалічними структурами тернарних фаз з алюмінієм, для яких одним з найчастіше реалізованих типів структур є CT W₅Si₃ i Nb₅SiSn₂.

Ряд систем {Nb,Ta}–Al–{Si,Ge,Sn,Sb} на сьогодні є недостатньо вивченим. Лише для систем Nb–Al–Si та Ta–Al–Si побудовано ізотермічні перерізи діаграм стану при 1400°С. Інші системи досліджували на предмет утворення тернарних сполук і твердих розчинів на основі бінарних сполук. Відомостей про взаємодію компонентів у системах Ta–Al–{Ge,Sn,Sb} у літературі немає. Для систем з кремнієм спільним є утворення твердих розчинів заміщення на основі бінарних силіцидів зі CT CrSi₂. Для всіх систем Nb–Al–{Si,Ge,Sn,Sb} характерним є існування тернарних фаз зі CT Cr₃Si – твердого розчину заміщення на основі Nb₃Al у системі з Si, тернарної сполуки у системі з Ge, HPTP між відповідними ізоструктурними бінарними споуками у системах зі Sn та Sb. Загалом, кристалічні структури тернарних фаз систем {Nb,Ta}–Al–{Si,Ge,Sn,Sb} належать до тетрагональної та кубічної (по 4 фази), гексагональної (2) та ромбічної (1) сингоній.

У табл. 1.11 узагальнено відомості про дослідження діаграм стану потрійних систем з алюмінієм та кількість тернарних сполук, що в них утворюються.

З огляду на ступінь дослідженості споріднених потрійних систем, особливості фазових рівноваг і кристалографічні характеристики тернарних фаз, можна стверджувати, що систематичне дослідження фазових рівноваг і кристалічної структури тернарних сполук і твердих розчинів у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при однакових умовах є актуальним і своєчасним.

Можна спрогнозувати:

- у системах буть утворюватись тверді розчини заміщення на основі бінарних сполук і тернарні сполуки як постійних, так і змінних складів вздовж ізоконцентрат *d*-елементів;
- між ізоструктурними бінарними сполуками утворюватимуться неперервні ряди твердих розчинів;
- у структурах тернарних сполук можуть утворюватись статистичні суміші атомів *p*-елементів, однак повинна проявитись тенденція до впорядкування атомів і, можливо, реалізація повністю впорядкованих тернарних структур;
- домінуватиме тетрагональна та гексагональна симетрія структур, можлива стехіометрія тернарних сполук *T*(Al_{1-x}*M_x*)₃, *T*₅Al*M*₃, *T*₅(Al_{1-x}*M_x*)₃, що відповідатимуть структурним типам TiAl₃, Hf₅CuSn₃, W₅Si₃ (Nb₅SiSn₂);
- порівняння досліджених систем з іншими системами, які містять d-елемент та два p-елементи, дасть змогу виявити закономірності взаємодії компонентів і у подальшому спрогнозувати практичне застосування нових фаз.

Таблиця 1.11

	<i>d</i> -елемент								
р-елемент	Ti	Zr	Hf	Nb	Та				
Si	▲ 2	▲ 3	2	▲ 2	▲ 0				
Ge	Δ 3		1	1					
Sn	Δ 1	2	1	1					
Sb	Δ 1	2	2						

Дослідженість потрійних систем {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Sb}

Примітки: ▲ – ізотермічні перерізи діаграм стану побудовані в повному концентраційному інтервалі;

страни перерізи діаграм стану побудовані в частковому концентраційному інтервалі;

число – кількість тернарних сполук;

сірим кольором виділено системи {Zr,Hf}-Al-{Si,Ge,Sn,Sb}.

РОЗДІЛ 2

МЕТОДИКА ЕКСПЕРИМЕНТУ

Для дослідження взаємодії компонентів у потрійних системах {Zr,Hf}–Al– {Si,Ge,Sn,Sb} застосували класичні методи, розроблені методики дослідження і обладнання, які використовують науковці кафедри неорганічної хімії. Сплави синтезували в електродуговій печі безпосереднім сплавлянням компонентів і подальшим гомогенізаційним відпалюванням. Фазові рівноваги і кристалічну структуру тернарних фаз систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} визначали за допомогою рентгенівських дифракційних методів порошку (рентгенівський фазовий і структурний аналізи) і монокристалу (структурний аналіз). Кількісний елементний склад індивідуальних фаз встановлювали методом локального рентгеноспектрального аналізу.

2.1. Синтез зразків

2.1.1. Вихідні матеріали

Вихідними компонентами для виготовлення сплавів для досліджень були компактні речовини з таким вмістом основного компонента: цирконій – 99,95 мас.%; гафній – 99,95 мас.%; алюміній – 99,99 мас.%; кремній – 99,999 мас.%; германій – 99,999 мас.%, олово – 99,99 мас.%; стибій – 99,97 мас.%.

2.1.2. Синтез та контроль складу сплавів

Зразки масою до 1 г ситезували сплавлянням суміші вихідних компонентів (зважених з точністю до 0,001 г) в електродуговій печі, що оснащена мідним подом, який охолоджується потоком води. Експеримент проводили в атмосфері очищеного аргону при тиску 1 атм. Для додаткового очищення газової атмосфери перед сплавлянням кожної партії зразків (максимум 11) першим сплавляли пористий титан, що слугував гетером. Електричну дугу отримували між мідним подом і вольфрамовим електродом. Для досягнення однорідності сплавів, їх перевертали та повторно переплавляли. Для компенсації неконтрольованої втрати стибію під час сплавляння, його зважували у надлишку 3 мас.%.

Контроль складу забезпечували порівнянням маси вихідних компонентів з масою сплаву. Склад сплаву приймали рівним складу вихідної суміші компонентів, якщо втрати маси після сплавляння були меншими за 1 %. Крім того, склади синтезованих зразків перевіряли методом рентгенфлуоресцентної спектроскопії за допомогою аналізатора ElvaX Pro [124].

2.1.3. Термічна обробка сплавів

Гомогенізацію сплавів здійснювали шляхом їхнього відпалювання при температурі 600°С впродовж 1 місяця у кварцових ампулах під вакуумом. Перед запаюванням в ампули сплави загортали в танталову фольгу для запобігання контакту між ними. Термічну обробку проводили в муфельній електропечі VULCAN A-550 з автоматичним регулюванням температури з точністю \pm 5°С. Запаяні в ампулах відпалені сплави загартовували у холодній воді. Температуру відпалу 600°С було обрано, опираючись на діаграми стану подвійних систем що обмежують досліджувані потрійні, а саме на температури плавлення вихідних компонентів та границь ліквідусів. Крім цього, згідно з діаграмами стану подвійних систем, при вибраній температурі відпалу існує переважна більшість бінарних сполук, а отже існує ймовірність утворення більшої кількості тернарних сполук. Гомогенність та рівноважність синтезованих зразків контролювали рентгенографічно.

2.2. Рентгенівські методи дослідження

2.2.1. Рентгенівський дифракційний фазовий аналіз

Основним методом для побудови ізотермічних перерізів діаграм стану потрійних систем був рентгенівський дифракційний фазовий аналіз. Цей метод заснований на фундаментальних особливостях рентгенівського проміння –

здатності проникати у речовину і дифрагувати від структурних одиниць кристалічної речовини, які повторюються періодично в просторі. Він дає можливість встановити присутність у зразках тих чи інших кристалічних фаз і визначити їхню структуру [125]. Рентгенівський дифракційний фазовий аналіз здійснювали шляхом порівняння експериментальних порошкових дифрактограм синтезованих зразків між собою, а також із розрахованими за допомогою пакету програм WinXPow [126], дифрактограмами простих речовин, бінарних і тернарних сполук досліджуваних і споріднених систем.

Досліджувані сплави подрібнювали та розтирали в порошок в агатовій ступці, наносили на кювети, які поміщали на гоніометри дифрактометрів для експозиції. Порошкові рентгенограми отримували в кроковому режимі сканування на дифрактометрах ДРОН-2.0М (проміння Fe Ka, мангановий фільтр для відсійювання β -відбиттів, крок сканування $0,05^{\circ} 2\theta$, інтервал сканування $20^{\circ} \le 2\theta \le 100-140^{\circ}$, геометрія Брегта-Брентано) та STOE Stadi P (проміння Cu Ka₁, увігнутий Ge[111] монохроматор типу Іоганна, крок детектора $0,015^{\circ} 2\theta$, інтервал сканування $6^{\circ} \le 2\theta \le 110^{\circ}$, модифікована геометрія Гіньє).

На основі здійсненого дифракційного ретгенофазового аналізу зразків встановлено фазові рівноваги у системах, і методом триангуляції були побудовані ізотермічні перерізи діаграм стану потрійних систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}.

2.2.2. Локальний енергодисперсійний рентгенівський спектральний аналіз

Локальний рентгеноспектральний аналіз використовували для визначення хімічного складу фаз у сплавах систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, а також для підтвердження фазових рівноваг, визначених фазовим аналізом за допомогою рентгенівської дифракції.

Локальний рентгеноспектральний аналіз полікристалічних зразків проводили на растровому електронному мікроскопі РЕММА-102-02, оснащеному енергодисперсійним рентгенівським спектрометром ЕДАР та на скануючому електронному мікроскопі Tescan Vega 3 LMU, оснащеному двома детекторами (вторинних електронів і зворотно розсіяних електронів) та енергодисперсійним рентгенівським аналізатором Oxford Instruments Aztec ONE з детектором X-Max^N20. Сплави для аналізу запаяювали у струмопровідні металічні кільця за допомогою сплаву Вуда, шліфували та полірували за допомогою шліфувального паперу з різною абразивністю, а на фінальних стадіях підготовки — з дрібнодисперсним порошком Cr_2O_3 . Загальний склад сплавів отримували на плоских ділянках площею $1 \times 1 \text{ мм}^2$, а локальний хімічний склад індивіальних фаз – на основі усереднення 4-5 точкових складів однакових зерен.

2.2.3. Рентгеноструктурний аналіз методом монокристалу

Монокристали правильної форми для прецизійного визначення кристалічної структури тернарних сполук ZrAl_{0,23}Ge_{1,77} і Zr₅AlGe₃ відбирали за допомогою оптичного мікроскопа з гомогенізованих зразків Zr_{33,3}Al₁₀Ge_{56,7} і Zr_{55,6}Al_{11,1}Ge_{33,3}, відповідно.

Дифракційні дані від монокристалів отримували при кімнатній температурі на монокристальному дифрактометрі Rigaku AFC7, оснащеному детектором Mercury CCD (проміння Мо Ка, графітовий монохроматор). Корекцію експериментальних даних на поглинання здійснювали за допомогою процедури *"multi-scan"* (кількаразове сканування вибраних брегтівських відбиттів в різних напрямах кристалу). Для обробки дифракційних даних, у тому числі корегування на поглинання, використовували програмне забезпечення d*TREK, що керує роботою дифрактометра.

Визначення та уточнення кристалічних структур проводили за допомогою пакету програм WinCSD [127]. Кристалічні структури сполук визначали прямими методами, а координати, ізотропні та анізотропні параметри зміщення атомів уточнювали методом найменших квадратів. Одним із критеріїв достовірності моделі структури є відсутність максимумів чи мінімумів на різницевих синтезах Фур'є та значення факторів розбіжності та добротності:

$$R = \frac{\sum \|F_{a}\| - |F_{c}|}{\sum |F_{a}|} - \phi$$
актор розбіжності;

$$wR = \left\{ \frac{\sum \left[w \left(F_{o}^{2} - F_{c}^{2}\right)^{p} \right]}{\sum \left[w \left(F_{o}^{2}\right)^{2} \right]^{p}} \right\}^{1/2} -$$
зважений фактор розбіжності;

$$S = \left\{ \frac{\left[w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} \right]}{(n-p)} \right\}^{1/2} - \phi$$
актор добротності,

де F_o та F_c – спостережувані та розраховані структурні фактори; w – ваговий коефіцієнт; n – кількість відбиттів; p – кількість уточнюваних параметрів.

2.2.4. Рентгеноструктурний аналіз методом порошку

Метод полягає в уточненні кристалічних структур сполук в результаті математичної обробки експериментальних масивів рентгенівських дифракційних даних від порошкових (полікристалічних) зразків, отриманих на дифрактометрах [125, 128].

Експериментальні дифрактограми отримували при кімнатній температурі на дифрактометрах ДРОН-2.0М (проміння Fe Ka, манґановий β-фільтр, крок сканування 0,05° 2 θ , інтервал сканування 20° $\leq 2\theta \leq 100-140^{\circ}$, геометрія Бреґґа-Брентано) та STOE Stadi P (проміння Cu Ka₁, увігнутий Ge[111] монохроматор типу Іоганна, крок детектора 0,015° 2 θ , інтервал сканування 6° $\leq 2\theta \leq 110^{\circ}$, модифікована геометрія Гіньє).

Під час підготовки зразків, їх розтирали до дрібнодисперсного порошку в агатовій ступці, в окремих випадках отримані порошки просійювали через сита, наносили на кювети, які поміщали на гоніометри дифрактометрів для експозиції.

Параметри профілю та структури уточнювали, використовуючи алгоритм Рітвельда [129], за допомогою пакету програм FullProf Suite [130]. Цей метод передбачає наявність вихідної моделі структури для уточнення і ґрунтується на математичному методі найменших квадратів. Як вихідні моделі структур використовували координати атомів у прототипах (структурних типах) чи параметри структур споріднених сполук. Параметри профілю включають в себе такі параметри як відносне зміщення зразка (геометрія Бретта-Брентано) або товщину зразка (для масивів даних знятих на проходження), параметри елементарної комірки, параметри форми піків дифрактограми (функція профілю псевдо-Войта), параметр змішування піків та параметри асиметрії піків дифрактограми. Поміж уточнюваних параметрів структури були координати атомів, коефіцієнти заповнення кристалографічних позицій, ізотропні параметри зміщення (теплового коливання) атомів та параметри домінуючої орієнтації кристалічних зерен (текстурованості). Використовуючи поліномні функції з задіянням алгоритму фільтрування Фур'є уточнювали фон усього профілю експериментальних дифрактограм.

Правильність обраної моделі оцінювали за значеннями факторів розбіжності та добростності:

$$\begin{split} R_{B} &= \frac{\sum_{k} |I_{k} - I_{k,c}|}{\sum_{k} |I_{k}|} & - \text{ брегтівський структурний фактор розбіжності;} \\ R_{p} &= \frac{\sum_{i} |y_{i} - y_{c,i}|}{\sum_{i} |y_{i}|} & - \text{ профільний фактор розбіжності;} \\ R_{wp} &= \left(\frac{\sum_{i} w_{i} (y_{i} - y_{c,i})^{2}}{\sum_{i} w_{i} (y_{i})^{2}}\right)^{\frac{1}{2}} & - \text{ зважений профільний фактор розбіжності;} \\ \chi^{2} &= \left(\frac{R_{wp}}{R_{exp}}\right)^{2} & - \text{ фактор добротності опису профілю;} \\ R_{exp} &= \left(\frac{(N - P + C)}{\sum_{i} w_{i} (y_{i})^{2}}\right)^{\frac{1}{2}} & - \text{ очікуваний фактор розбіжності,} \end{split}$$

де y_i та $y_{c,i}$ – спостережувана та розрахована інтенсивність відбиття на *i*-му кроці; $w_i = \frac{1}{y_i}$; I_k та $I_{k,c}$ – спостережувана та розрахована інтенсивність відбиттів; N – кількість виміряних точок; P – кількість параметрів, які уточнювали; C – кількість пов'язаних параметрів. Структуру вважали достовірно визначеною при значенні брегтівського фактора менше 0,1.

2.3. Кристалохімічний аналіз структур

Під час аналізу та опису кристалічних структур тернарних сполук систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} використовували фундаментальні засади кристалографії [131], а також кристалохімічні параметри, такі як міжатомні віддалі, координаційні числа і многогранники атомів. Для аналізу кристалохімічних особливостей структур, експериментально визначені параметри були стандартизовані за **STRUCTURE** TIDY [132] допомогою програми та Міжнародних кристалографічних таблиць [133]. Під час опису координаційного оточення атомів у структурах тернарних інтерметалідів використовували систематику структурних типів П.І. Крип'якевича [134], в основі якої лежить координація атомів малого розміру. Під час встановлення взаємозв'язків між структурами бінарних і тернарних сполук також аналізували особливості їхньої побудови, як зрощення сіток атомів, шарів поліедрів чи фрагментів простіших структурних типів інтерметалічних слолук [135].

РОЗДІЛ З

РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛІДЖЕНЬ

3.1. Фазові рівноваги в потрійних системах

Ізотермічні перерізи при 600°С діаграм стану потрійних систем {Zr,Hf}–Al– {Si,Ge,Sn,Sb} побудовано в повних концентраційних інтервалах з використанням методів рентгенівського фазового, структурного та локального спектрального аналізів.

3.1.1. Бінарні сполуки систем {Zr,Hf}–Al, {Zr,Hf}–{Si,Ge,Sn,Sb} та {Zr,Hf}–Sb

З огляду на те, що подвійні системи {Zr,Hf}–Al, {Zr,Hf}–{Si,Ge,Sn,Sb} та {Zr,Hf}–Sb досліджені достатньо ґрунтовно, то під час виконання роботи двокомпонентні сплави синтезували з метою підтвердження існування при 600°C бінарних сполук та їхніх кристалічних структур. Загалом синтезовано та досліджено фазовий склад 61 двокомпонентного зразка.

Рентгенівськими дифракційним та спектральним методомами при температурі дослідження (600°С) підтверджено існування та типи структур:

- 15 бінарних алюмінідів: Zr₃Al (CT Cu₃Al), Zr₂Al (CT Co_{1,75}Ge), Zr₃Al₂ (CT Zr₃Al₂), Zr₄Al₃ (CT Zr₄Al₃), ZrAl (CT TII), Zr₂Al₃ (CT Zr₂Al₃), ZrAl₂ (CT MgZn₂), ZrAl₃ (CT ZrAl₃), Hf₂Al (CT CuAl₂), Hf₃Al₂ (CT Zr₃Al₂), Hf₄Al₃ (CT Zr₄Al₃), HfAl (CT TII), Hf₂Al₃ (CT Zr₂Al₃), HfAl₂ (CT MgZn₂), HfAl₃ (CT ZrAl₃);
- 13 бінарних силіцидів: Zr₃Si (CT Ti₃P), Zr₂Si (CT CuAl₂), Zr₅Si₃ (CT Mn₅Si₃), Zr₃Si₂ (CT U₃Si₂), Zr₅Si₄ (CT Zr₅Si₄), ZrSi (CT FeB), ZrSi₂ (CT ZrSi₂), Hf₂Si (CT CuAl₂), Hf₅Si₃ (CT Mn₅Si₃), Hf₃Si₂ (CT U₃Si₂), Hf₅Si₄ (CT Zr₅Si₄), HfSi (CT FeB), HfSi₂ (CT ZrSi₂);

- 11 бінарних германідів: Zr₃Ge (CT Ti₃P), Zr₅Ge₃ (CT Mn₅Si₃), Zr₅Ge₄ (CT Zr₅Si₄), ZrGe (CT FeB), ZrGe₂ (CT ZrSi₂), Hf₃Ge (CT Ti₃P), Hf₂Ge (CT CuAl₂), Hf₅Ge₃ (CT Mn₅Si₃), Hf₃Ge₂ (CT U₃Si₂), Hf₅Ge₄ (CT Sm₅Ge₄), HfGe₂ (CT ZrSi₂);
- 6 бінарних станідів: Zr_{3,2}Sn_{0,8} (СТ Cr₃Si), Zr₅Sn₃ (СТ Mn₅Si₃), Zr₅Sn₄ (СТ Ті₅Ga₄),
 ZrSn₂ (СТ ТіSi₂), Hf₅Sn₃ (СТ Mn₅Si₃), HfSn₂ (СТ CrSi₂);
- 11 бінарних антимонідів: Zr₃Sb (CT Ni₃P), Zr₂Sb (CT La₂Sb), Zr₅Sb₃ (CT Mn₅Si₃), Zr₅Sb₄ (CT Ti₅Ga₄), ZrSb (CT ZrSb), ZrSb₂ (CT PbCl₂), Hf₃Sb (CT Ni₃P), Hf₅Sb₃ (CT Y₅Bi₃), HfSb (CT ZrSb), HfSb₂ (CT TiAs₂), AlSb (CT ZnS).

3.1.2. Системи {Zr,Hf}-Al-Si

Для встановлення фазових рівноваг у системі Zr–Al–Si було виготовлено 17 двокомпонентних та 45 трикомпонентних сплавів, хімічний склад яких зображено на рис. 3.1.

Рис. 3.1. Склад сплавів системи Zr-Al-Si.

Ізотермічний переріз діаграми стану потрійної системи Zr–Al–Si при 600°C побудовано в повному концентраційному інтервалі (рис. 3.2). Він містить 21 одно-, 42 дво- та 22 трифазних областей. Бінарні алюмініди цирконію не розчиняють помітної кількості Si, тоді як бінарні силіциди цирконію розчиняють алюміній з утворенням обмежених твердих розчинів заміщення різної протяжності: $Zr_2Si - 9$ ат.% Al, $Zr_5Si_3 - 15$ ат.% Al, $Zr_3Si_2 - 7,5$ ат.% Al, $Zr_5Si_4 - 6$ ат.% Al, ZrSi - 9,5 ат.% Al та $ZrSi_2 - 12$ ат.% Al. У системі Zr-Al-Si при 600°C встановлено існування трьох тернарних сполук постійного складу: $ZrAl_{2,55}Si_{0,45}$, $ZrAl_{0,33}Si_{1,67}$ і $Zr_5Al_{2,44}Si_{0,56}$ (табл. 3.1). Найбільшою кількістю подвійних рівноваг (7) характеризується твердий розчин заміщення на основі бінарної сполуки Zr_5Si_3 .

Рис. 3.2. Ізотермічний переріз діаграми стану системи Zr-Al-Si при 600°С.

Для дослідження фазових рівноваг у системі Hf–Al–Si було виготовлено 14 двокомпонентних та 39 трикомпонентних сплавів, хімічний склад яких зображено на рис. 3.3.

Рис. 3.3. Склад сплавів системи Hf-Al-Si.

Ізотермічний переріз діаграми стану потрійної системи Hf-Al-Si при 600°С побудовано в повному концентраційному інтервалі (рис. 3.4). Він містить 17 одно-, 32 дво- та 16 трифазних областей. Між ізоструктурними бінарними сполуками Hf₂Al i Hf₂Si (CT CuAl₂, CП tI12, ПГ I4/mcm) утворюється HPTP. Параметри елементарної комірки зменшуються при заміщенні атомів Al на атоми Si (a = 6,775(3)-6,553(2), c = 5,3969(2)-5,186(2) Å, V = 246,46(6)-222,65(4) Å³). На відповідних графіках (рис. 3.5) спостерігається незначне від'ємне відхилення від лінійності (правила Вегарда), зумовлене, очевидно, сильнішою взаємодією між атомами. Інші бінарні алюмініди гафнію практично не розчиняють Si, а бінарні силіциди гафнію розчиняють алюміній з утворенням відповідних обмежених твердих розчинів заміщення різної протяжності: Hf₅Si₃ – 13,5 ат.% Al, Hf₃Si₂ – 7 2,5 ат.% Аl, ат.% Al, Hf₅Si₄ _ 5.5 ат.% Al, HfSi _ HfSi₂ 8 ат.% Аl. У системі Hf-Al-Si при 600°С знайдено дві тернарні сполуки постійного складу, HfAl_{2.55}Si_{0.45} та Hf₅Al_{2.56}Si_{0.44}, кристалографічні характеристики яких приведено у табл. 3.1. Найбільшою кількістю подвійних рівноваг (7 і 6) характеризуються тернарна сполука HfAl_{2,55}Si_{0,45} і твердий розчин заміщення на основі бінарної сполуки Hf₅Si₃. Границі рідини у системі Al–Si зображено згідно з її діаграмою стану.

Рис. 3.4. Ізотермічний переріз діаграми стану системи Hf-Al-Si при 600°С.

Таблиця 3.1

Спотиса	СТ	СПГ		Параметр		гри комірки, Å	
Сполука	CI	CII	111	а	b	С	
ZrAl _{2,55} Si _{0,45}	TiAl ₃	tI8	I4/mmm	3,91422(15)	_	8,9753(3)	
ZrAl _{0,33} Si _{1,67}	ZrAl _{0,23} Ge _{1,77}	<i>tI</i> 32	$I4_1/amd$	3,7095(2)	_	29,345(3)	
Zr ₅ Al _{2,44} Si _{0,56}	Nb_5SiSn_2	<i>tI</i> 32	I4/mcm	11,0454(4)	_	5,3942(2)	
HfAl _{2,55} Si _{0,45}	TiAl ₃	tI8	I4/mmm	3,89413(14)	_	8,9386(3)	
Hf ₅ Al _{2,54} Si _{0,46}	Mn ₅ Si ₃	<i>hP</i> 16	$P6_3/mcm$	8,0321(3)	_	5,6247(2)	

Кристалографічні характеристики тернарних сполук систем {Zr,Hf}-Al-Si

Рис. 3.5. Параметри елементарної комірки в області гомогенності HPTP $Hf_2Al_{1-x}Si_x$ ($0 \le x \le 1$).

3.1.3. Системи {Zr,Hf}-Al-Ge

Для дослідження діаграми стану системи Zr–Al–Ge було виготовлено 15 двокомпонентних та 52 трикомпонентні сплави. Хімічний склад синтезованих сплавів системи Zr–Al–Ge зображено на рис. 3.6.

Ізотермічний переріз діаграми стану потрійної системи Zr–Al–Ge при 600°C побудовано в повному концентраційному інтервалі (рис. 3.7). Він містить 21 одно-, 43 дво- та 24 трифазних областей. Бінарні алюмініди цирконію не розчиняють помітної кількості ґерманію. Бінарні ґерманіди цирконію ZrGe₂ та Zr₅Ge₃ розчиняють 4 і 10 і ат.% Al, відповідно, тоді як Zr₅Ge₄ та ZrGe практично не розчиняють алюміній. У системі Zr–Al–Ge при 600°C встановлено існування п'яти тернарних сполук постійного складу: ZrAl_{2,52}Ge_{0,48}, ZrAl_{0,23}Ge_{1,77}, Zr₁₁Al₄Ge₆, Zr₅AlGe₃ та Zr₅Al_{2,70}Ge_{0,30} (табл. 3.2). Найбільшою кількістю подвійних рівноваг (10) характеризується твердий розчин заміщення на основі ґерманіду Zr₅Ge₃.

Рис. 3.6. Склад сплавів системи Zr-Al-Ge.

Рис. 3.7. Ізотермічний переріз діаграми стану системи Zr-Al-Ge при 600°С.

Для дослідження діаграми стану системи Hf–Al–Ge було виготовлено 13 двокомпонентних та 47 трикомпонентних сплавів. Хімічний склад синтезованих сплавів системи Hf–Al–Ge зображено на рис. 3.8.

Рис. 3.8. Склад сплавів системи Hf-Al-Ge.

Ізотермічний переріз діаграми стану потрійної системи Hf–Al–Ge при 600°C побудовано в повному концентраційному інтервалі (рис. 3.9). Він містить 19 одно-, 37 дво- та 20 трифазних областей. Між ізоструктурними бінарними сполуками Hf₂Al і Hf₂Ge (CT CuAl₂, CП *tl*12, ПГ *I4/mcm*) утворюється HPTP. Параметри елементарної комірки зменшуються при заміщенні атомів Al на атоми Ge (a = 6,775(3)-6,596(2), c = 5,3969(2)-5,291(2) Å, V = 246,46(6)-230,19(4) Å³). Подібно до HPTP Hf₂Al_{1-x}Si_x (x = 0-1) у системі Hf–Al–Si, графіки зміни параметрів елементарної комірки для HPTP Hf₂Al_{1-x}Ge_x (x = 0-1) (рис. 3.10) характеризуються від'ємним відхиленням від лінійності (правила Веґарда), зумувлене, очевидно, сильнішою взаємодією атомів.

Рис. 3.9. Ізотермічний переріз діаграми стану системи Hf-Al-Ge при 600°С.

Рис. 3.10. Параметри елементарної комірки в області гомогенності HPTP $Hf_2Al_{1-x}Ge_x \ (0 \le x \le 1).$

Бінарні алюмініди гафнію не розчиняють помітної кількості германію. Бінарні германіди гафнію HfGe₂, Hf₃Ge₂ та Hf₅Ge₃ розчиняють 9, 2,5 та 5 ат.% Al, відповідно, тоді як HfGe та Hf₅Ge₄ практично не розчиняють алюміній. У системі Hf–Al–Ge при 600°C існує чотири тернарні сполуки постійного складу: HfAl_{2,40}Ge_{0,60}, Hf₁₁Al₄Ge₆, Hf₅AlGe₃ та Hf₅Al_{2,70}Ge_{0,30} (табл. 3.2). Найбільшою кількістю подвійних рівноваг (по 8) характеризуються твердий розчин заміщення на основі бінарної сполуки Hf₅Ge₃ та тернарна сполука Hf₁₁Al_{3,5}Ge_{6,50}. Границі рідини у системі Al–Ge зображено згідно з її діаграмою стану.

Таблиця 3.2

Сножие					Параметри комірки, Å		
Сполука	CI	CII	111	а	b	С	
ZrAl _{2,52} Ge _{0,48}	TiAl ₃	tI8	I4/mmm	3,92395(11)		9,0476(4)	
ZrAl _{0,23} Ge _{1,77}	ZrAl _{0,23} Ge _{1,77}	<i>tI</i> 32	$I4_1/amd$	3,8013(2)	_	29,893(3)	
Zr ₁₁ Al _{3,34} Ge _{3,66}	Zr ₁₁ Al _{3,34} Ge _{3,66}	<i>tI</i> 84	I4/mmm	10,3679(7)		14,8529(11)	
Zr ₅ AlGe ₃	Hf_5CuSn_3	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,104(3)		5,654(2)	
$Zr_5Al_{2,70}Ge_{0,30}$	Nb_5SiSn_2	<i>tI</i> 32	I4/mcm	11,0145(7)		5,3921(4)	
HfAl _{2,40} Ge _{0,60}	TiAl ₃	tI8	I4/mmm	3,9021(2)	_	8,9549(8)	
Hf ₁₁ Al _{3,50} Ge _{6,50}	Zr ₁₁ Al _{3,34} Ge _{3,66}	<i>tI</i> 84	I4/mmm	10,1764(8)	_	14,1729(13)	
Hf ₅ AlGe ₃	Hf_5CuSn_3	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,0641(3)		5,5874(2)	
$Hf_5Al_{2,70}Ge_{0,30}$	Mn ₅ Si ₃	<i>hP</i> 16	$P_{6_3/mcm}$	8,0880(3)	_	5,6511(2)	

Кристалографічні характеристики тернарних сполук систем {Zr,Hf}-Al-Ge

3.1.4. Системи {Zr,Hf}-Al-Sn

Для дослідження діаграми стану системи Zr–Al–Sn було виготовлено 15 двокомпонентних та 44 трикомпонентних сплавів, хімічний склад яких зображено на рис. 3.11.

Ізотермічний переріз діаграми стану потрійної системи Zr–Al–Sn при 600°C побудовано в повному концентраційному інтервалі (рис. 3.12) [136]. Він містить 18 одно-, 36 дво- та 19 трифазних областей.

Рис. 3.11. Склад сплавів системи Zr-Al-Sn.

При 600°С олово i, відповідно, частина подвійної системи Al–Sn (до 80 ат.% Al) перебувають у рідкому стані. Межі рідкої фази у потрійній області системи Zr–Al–Sn екстрапольовано, виходячи з меж рідини у подвійних системах: 3,5 ат.% Zr у системі Zr–Sn i 80 ат.% Al у системі Al–Sn. При 600°С у рівновазі з рідиною перебувають три фази: Al, ZrSn₂ i ZrAl_{2,68}Sn_{0,32}. Бінарні сполуки Zr₅Sn₄ та Zr₅Sn₃ розчиняють 11,1 i 2,5 ат.% Al, відповідно, що супроводжується утворенням твердих розчинів заміщення вздовж ізоконцентрат 55,5 i 62,5 ат.% Zr, відповідно. Інші бінарні станіди цирконію, а також всі алюмініди цирконію не розчиняють помітної кількості третього компонента. У системі Zr–Al–Sn при 600°С знайдено три тернарні сполуки: ZrAl_{2,68}Sn_{0,32}, Zr₅Al_{2,71}Sn_{0,29} i Zr₅Al_{1,68-0,40}Sn_{1,32-2,60} (табл. 3.3). Найбільшою кількістю подвійних рівноваг (по 8) характеризуються твердий розчин заміщення на основі бінарної сполуки Zr₅Sn₄ та тернарна сполука Zr₅Al_{1,68-0,40}Sn_{1,32-2,60}.

Рис. 3.12. Ізотермічний переріз діаграми стану системи Zr-Al-Sn при 600°С.

Для дослідження діаграми стану системи Hf–Al–Sn було виготовлено 12 двокомпонентних та 42 трикомпонентних сплавів, хімічний склад яких зображено на рис. 3.13.

Ізотермічний переріз діаграми стану потрійної системи Hf–Al–Sn при 600°C побудовано в повному концентраційному інтервалі (рис. 3.14). Він містить 15 одно-, 30 дво- та 16 трифазних областей. Межі рідкої фази у багатій на Sn частині системи Hf–Al–Sn екстрапольовано, виходячи з меж рідини у подвійних системах: 3 ат.% Hf у системі Hf–Sn i 80 ат.% Al у системі Al–Sn. При 600°C у рівновазі з рідиною перебувають три фази: Al, HfSn₂ i ZrAl_{2,64}Sn_{0,36}. Бінарні сполуки не розчиняють помітної кількості третього компонента, окрім станіду Hf₅Sn₃, на основі якого утворюється твердий розчин включення протяжністю до 11,1 ат.% Al. У системі Hf–Al–Sn при 600°C знайдено три тернарні сполуки: HfAl_{2,64}Sn_{0,36}, Hf₅Al_{2,70}Sn_{0,30} і Hf₅Al_{1,33-0,78}Sn_{1,67-2,22} (табл. 3.3). Найбільшою кількістю подвійних рівноваг (6) характеризується твердий розчин на основі бінарної сполуки Hf₅Sn₃.

Рис. 3.13. Склад сплавів системи Hf-Al-Sn.

Рис. 3.14. Ізотермічний переріз діаграми стану системи Hf–Al–Sn при 600°С.

	гаолиця 5.5					
и тернарних сполук систем {Zr,Hf}–Al–Sn						
пг	Параметри комірки, Å					
111	а	b	С			
I4/mmm	3,98855(18)	_	9,0848(4)			

_

11,0530(9)

11,1005(9)-

11,1829(12)

3,95450(2)

8,0910(4)

10,9627(8)-

11,0291(9)

Кристалографічні характеристик

I4/mcm

I4/mcm

I4/mmm

 $P6_3/mcm$

I4/mcm

3.1.5. Системи {Zr,Hf}-Al-Sb

CT

 $UCuAl_2$

Nb₅SiSn₂

Nb₅SiSn₂

 $UCuAl_2$

Mn₅Si₃

Nb₅SiSn₂

Сполука

 $ZrAl_{2.68}Sn_{0.32}$

Zr₅Al_{2,71}Sn_{0,29}

Zr₅Al_{1,68-0,40}×

 $\times Sn_{1.32-2.60}$

HfAl_{2,64}Sn_{0,36}

Hf₅Al_{2,70}Sn_{0,30}

Hf₅Al_{1,33-0,78}×

 $\times Sn_{1,67-2,22}$

СП

tI8

*tI*32

*tI*32

*tI*8

*hP*16

*tI*32

Для дослідження діаграми стану системи Zr-Al-Sb було виготовлено 16 двокомпонентних та 45 трикомпонентних сплавів, хімічний склад яких зображено на рис. 3.15.

Ізотермічний переріз діаграми стану потрійної системи Zr-Al-Sb при 600°С побудовано в повному концентраційному інтервалі (рис. 3.16). Він містить 22 одно-, 45 дво- та 24 трифазних областей. Бінарні сполуки не розчиняють помітної кількості третього компонента, окрім антимонідів цирконію Zr₅Sb₄ та Zr₅Sb₃, на основі яких утворюються тверді розчини заміщення протяжністю 11,1 та 2,5 ат.% Al, відповідно. У системі Zr–Al–Sb при 600°C встановлено існування трьох тернарних сполук сталого складу – ZrAl_{2.65}Sb_{0.35}, Zr₅AlSb₃ та Zr₅Al_{2.55}Sb_{0.45}, та однієї тернарної сполуки змінного складу – Zr₅Al_{1.55-0.65}Sb_{1.45-2.35} (табл. 3.4). Найбільшою кількістю подвійних рівноваг (по 9) характеризуються твердий розчин на основі бінарної сполуки Zr₅Sb₄ та тернарна сполука Zr₅Al_{1.55-0.65}Sb_{1.45-2.35}.

Для дослідження діаграми стану системи Hf-Al-Sb було виготовлено 13 двокомпонентних та 43 трикомпонентні сплави, хімічний склад яких зображено на рис. 3.17.

Таблина 33

5,4071(5)

5,4537(5)-

5,5449(6)

8,94451(12)

5,6515(4)

5,4138(4)-

5,4913(5)

Рис. 3.15. Склад сплавів системи Zr-Al-Sb.

Рис. 3.16. Ізотермічний переріз діаграми стану системи Zr-Al-Sb при 600°С.

Рис. 3.17. Склад сплавів системи Hf-Al-Sb.

Ізотермічний переріз діаграми стану потрійної системи Hf–Al–Sb при 600°C побудовано в повному концентраційному інтервалі (рис. 3.18). Він містить 20 одно-, 41 дво- та 23 трифазних областей. Бінарна сполука Hf₅Sb₃ розчиняє 3 ат.% Al з утворенням твердого розчину заміщення вздовж ізоконцентрати 62,5 ат.% Hf. Інші бінарні сполуки не розчиняють помітної кількості третього компонента. У системі Hf–Al–Sb при 600°C встановлено існування п'яти тернарних сполук: HfAl_{2,67}Sb_{0,33}, Hf₂AlSb₃, Hf₅AlSb₃, Hf₅Al_{2,48}Sb_{0,52} та Hf₅Al_{1,52-0,74}Sb_{1,48-2,26} (табл. 3.4).

Найбільшою кількістю подвійних рівноваг (по 8) характеризуються тернарні сполуки Hf₅AlSb₃ та Hf₅Al_{1,52-0,74}Sb_{1,48-2,26}.

Рис. 3.18. Ізотермічний переріз діаграми стану системи Hf–Al–Sb при 600°С.

таолиця 3

Cramma	СТ	СП ПГ				Пара	Параметри комірки, Å	
Сполука	CI	CII	111	а	b	С		
ZrAl _{2,65} Sb _{0,35}	UCuAl ₂	tI8	I4/mmm	3,9142(2)	_	8,9753(4)		
Zr ₂ AlSb ₃	Zr ₂ CuSb ₃	tP6	<i>P</i> -4 <i>m</i> 2	3,9826(2)	_	8,7144(5)		
Zr ₅ Al _{2,55} Sb _{0,45}	Nb_5SiSn_2	<i>tI</i> 32	I4/mcm	11,0120(9)	_	5,3913(5)		
$Zr_5Al_{1,55-0,65} \times$	Nh-SiSn-	+132	IA/mcm	10,9810(9)-	_	5,4153(5)-		
\times Sb _{1,45-2,35}	1105515112	1152	14/mcm	11,0731(12)		5,4482(6)		
$HfAl_{2,67}Sb_{0,33}$	UCuAl ₂	tI8	I4/mmm	3,94191(9)	_	8,9078(2)		
Hf ₂ AlSb ₃	Zr ₂ CuSb ₃	tP6	<i>P</i> -4 <i>m</i> 2	3,9021(2)	_	8,6510(5)		
Hf ₅ AlSb ₃	Hf ₅ CuSn ₃	<i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8,3572(3)	—	5,6914(2)		
$Hf_{5}Al_{2,49}Sb_{0,51}$	Mn_5Si_3	<i>hP</i> 16	<i>P</i> 6 ₃ / <i>mcm</i>	8,0934(5)	_	5,6560(5)		
Hf ₅ Al _{1,52-0,74} ×	NIL C.C.	+12 2	IA/ma ama	10,8908(8)-	_	5,5114(4)-		
\times Sb _{1,48-2,26}	105515112	1132	14/ <i>MCM</i>	10,9344(9)		5,5403(5)		

Кристалографічні характеристики тернарних сполук систем {Zr,Hf}-Al-Sb

3.2. Кристалічні структури тернарних фаз

У системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°С встановлено існування 29 тернарних сполук (див. табл. 3.1-3.4), з них 22 сполуки синтезовано вперше. У цьому розділі приведено результати визначення параметрів кристалічної структури тернарних сполук та деяких твердих розчинів на основі бінарних сполук рентгенівськими дифракційними методами монокристалу та порошку.

3.2.1. Сполуки $TAl_{3-x}M_x$ (T = Zr, Hf; M = Si, Ge, Sn, Sb) з структурами типів TiAl₃ i UCuAl₂

В усіх потрійних системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb} при 600°С на ізоконцентратах 25 ат.% Zr чи Hf та при великому вмісті Al (63-67 ат.%) існують тернарні сполуки постійного складу загальної формули $TAl_{3-x}M_x$ (T = Zr, Hf; M = Si, Ge, Sn, Sb). Їхні кристалічні структури визначено рентгеніським дифракційним методом порошку. Па прикладі систем {Zr,Hf}-Al-Ge було досліджено фазовий склад сплавів, встановлено фазові рівноваги, визначено області гомогенності і параметри структури бінарних і тернарних фаз на розрізах $TAl_{3-x}Ge_x$ (T = Zr, Hf; x = 0-0,8) [137-140].

Кристалічні структури бінарних алюмінідів ZrAl₃ і HfAl₃ при 600°С належать до типу ZrAl₃ (СП *tI*16, ПГ *I4/mmm*) з чотирма повністю зайнятими правильними системам точок: одна позиція (4e) – для атомів Zr чи Hf і три позиції (4e, 4d ta 4c)для атомів Al. Параметри їхніх кристалічних структур уточнено методом Рітвельда за дифрактограмами двокомпонентних сплавів Zr₂₅Al₇₅ і Hf₂₅Al₇₅, відповідно. Деталі експерименту і кристалографічні характеристики сполук приведено у табл. 3.5, а координати та ізотропні параметри зміщення атомів – у табл. 3.6. Часткова заміна атомів Al на атоми Ge приводить до утворення тернарних сполук $ZrAl_{2.52}Ge_{0.48}$ i $HfAl_{2.40}Ge_{0.60}$. Дифрактограми зразків Zr₂₅Al_{72,5-65}Ge_{2,5-10} та Hf₂₅Al_{72,5-65}Ge₅₋₁₀ свідчать про існування двофазних областей між відповідними бінарними і тернарними сполуками. Однакові значення параметрів елементарних комірок для фаз у різних багатофазних зразках свідчать про відсутність значної розчинності Ge в ZrAl₃ та HfAl₃ і про сталий склад тернарних сполук.

Деталі експерименту і кристалографічні характеристики для ZrAl $_3$ та HfAl $_3$

Сполука	ZrAl ₃	HfAl ₃
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	4,00930(11) 17,2718(7)	3,9849(3) 17,1443(15)
Об'єм елементарної комірки V, Å ³	277,636(16)	272,24(3)
Густина $D_{\rm X}$, г см ⁻³	4,118	6,332
Параметр текстури / [напрям]	0,965(3) / [001]	0,931(3)/[110]
Дифрактометр	ДРОН-2.0М	STOE Stadi P
Інтервал 2 θ , °; крок, °	15-132; 0,05	6-110; 0,015
Параметри профілю: U V W	0,274(16) -0,28(2) 0,119(7)	0,036(3) 0,026(5) 0,006(10)
Параметр змішування η	0,906(18)	0,857(11)
Фактори розбіжності: <i>R</i> _В	0,0552	0,0500
$R_{ m p}, R_{ m wp}$	0,0335, 0,0422	0,0346, 0,0931
χ^2	1,20	1,23

(CT ZrAl₃, CII tI16, IIC I4/mmm, Z = 4)

Таблиця 3.6

Координати та ізотропні параметри зміщення атомів

у структурі сполук ZrAl₃ та HfAl₃ (СТ ZrAl₃, СП *tI*16, ПГ *I*4/*mmm*)

Атом	ПСТ	x	У	Z	B _{i30} , Å ²		
	ZrAl ₃						
Zr	4 <i>e</i>	0	0	0,11846(16)	0,78(4)		
Al1	4 <i>e</i>	0	0	0,3772(6)			
Al2	4 <i>d</i>	0	1/2	1/4	1,20(6)		
A13	4 <i>c</i>	0	1/2	0			
	HfAl ₃						
Hf	4 <i>e</i>	0	0	0,11857(9)	0,58(3)		
Al1	4 <i>e</i>	0	0	0,3777(6)			
Al2	4 <i>d</i>	0	1/2	1/4	1,08(6)		
Al3	4 <i>c</i>	0	1/2	0			

Кристалічну тернарних алюмогерманідів $ZrAl_{2.52}Ge_{0.48}$ i структуру $HfAl_{2,40}Ge_{0.60}$ уточнено методом Рітвельда дифрактограмами зразків за $Zr_{25}Al_{62.5}Ge_{12.5}$ і $Hf_{25}Al_{60}Ge_{15}$, відповідно (рис. 3.19). Деталі експерименту і кристалографічні характеристики для тернарних фаз приведено у табл. 3.7, координати та ізотропні параметри зміщення атомів – у табл. 3.8. Хімічний склад фаз у зразках Zr₂₅Al_{62,5}Ge_{12,5} і Hf₂₅Al₆₀Ge₁₅ додатково визначено локальним рентгеноспектральним аналізом шліфів сплавів (рис. 3.20). Визначені цим методом $(Zr_{1,01(3)}Al_{2,53(4)}Ge_{0,46(4)})$ i $Hf_{1,01(3)}Al_{2,40(4)}Ge_{0,59(4)}$ склали тернарних сполук відповідають складам, отриманим з дифракційного експерименту.

Рис. 3.19. Експериментальні (точки), розраховані (лінії) та різницеві (внизу рисунків) дифрактограми зразків: *a* – Zr₂₅Al_{62,5}Ge_{12,5} (проміння Fe Kα) і *б* – Hf₂₅Al₆₀Ge₁₅ (проміння Cu Kα₁). Вертикальні риски вказують на положення відбиттів індивідуальних фаз.

Деталі експерименту і кристалографічні характеристики для $ZrAl_{2,52}Ge_{0,48}$ і HfAl_{2,40}Ge_{0,60} (CT TiAl₃, СП *tI*8, ПГ *I*4/*mmm*, *Z* = 2)

Уточнений склад сполуки	ZrAl _{2,52(1)} Ge _{0,48(1)}	HfAl _{2,40(1)} Ge _{0,60(1)}
Параметри елементарної комірки: <i>a</i> , Å	3,92395(11)	3,9021(2)
<i>c</i> , Å	9,0476(4)	8,9549(8)
Об'єм елементарної комірки V, Å ³	139,309(8)	136,351(8)
Густина $D_{\rm X}$, г см ⁻³	4,628	6,988
Параметр текстури / [напрям]	0,9873(18) / [001]	0,927(2)/[110]
Дифрактометр	ДРОН-2.0М	STOE Stadi P
Інтервал 2 θ , °; крок, °	15-130; 0,05	6-106; 0,015
Параметри профілю: U	0,221(13)	0,220(2)
V	-0,218(18)	-0,046(4)
W	0,118(6)	0,0201(8)
Параметр змішування η	0,602(16)	0,689(5)
Фактори розбіжності: <i>R</i> _В	0,0630	0,0383
$R_{\rm p}, R_{\rm wp}$	0,0263, 0,0341	0,0365, 0,0410
χ^2	1,12	1,27

Таблиця 3.8

Координати та ізотропні параметри зміщення атомів у структурах сполук

Атом	ПСТ	x	У	Z	$B_{ m i30}$, Å ²
ZrAl _{2,52(1)} Ge	$e_{0,48(1)}(M1=0,$	922(4)Al + 0,0	78(4)Ge; <i>M</i> 2 =	= 0,675(6)Al +	0,325(6)Ge)
Zr	2 <i>a</i>	0	0	0	0,86(3)
<i>M</i> 1	4 <i>d</i>	0	1/2	1/4	1,29(3)
M2	2b	0	0	1/2	1,20(3)
$HfAl_{2,40(1)}Ge_{0,60(1)}$ (M1 = 0,915(4)Al + 0,085(4)Ge; M2 = 0,570(6)Al + 0,430(6)Ge)					
Hf	2 <i>a</i>	0	0	0	0,584(13)
<i>M</i> 1	4 <i>d</i>	0	1/2	1/4	1,23(8)
M2	2b	0	0	1/2	1,17(8)

ZrAl_{2,52}Ge_{0,48} i HfAl_{2,40}Ge_{0,60} (CT TiAl₃, CΠ *tI*8, ΠΓ *I*4/*mmm*)

Кристалічні структури тернарних сполук $ZrAl_{2,52}Ge_{0,48}$ і $HfAl_{2,40}Ge_{0,60}$ належать до тетрагонального структурного типу TiAl₃ (СП *tl*8, ПГ *I4/mmm*) і описується таким набором правильних систем точок: 2*a* для атомів Zr або Hf, 4*d* і 2*b* для статистичних сумішей атомів Al і Ge. Встановлено, що у структурах обох сполук склади статистичних сумішей відрізняються між собою: переважаюче заміщення атомів Al на атоми Ge відбувається у положенні 2*b* (32,5 і 43 % для Zr- і Hf-вмісної сполуки, відповідно), на відміну від положення 4*d* (~8 % для обох сполук).

Рис. 3.20. Зображення поверхонь шліфів зразків $a - Zr_{25}Al_{62,5}Ge_{12,5}$ і $\delta - Hf_{25}Al_{60}Ge_{15}$ у вторинних електронах (електронний мікроскоп РЕММА-102-02). Світлі вкраплення– сплав Вуда, темні ділянки – тріщини і пори у зразках.

Структури сполук ZrAl₃ і ZrAl_{2,52}Ge_{0,48} близькоспорідені і належать до родини кубічних щільноупакованих структур. За систематикою П.І. Крип'якевича [134], структурні типи ZrAl₃ та TiAl₃ належать до класу 1 (структури з кубооктаедричним оточенням атомів малого розміру), а координаційними многогранниками усіх атомів в обох структурах є кубооктаедри (рис. 3.21). Міжатомні віддалі і координаційні числа атомів приведені у табл. 3.9 і 3.10. Міжатомні віддалі корелюють з сумами атомних і металічних радіусів відповідних елементів. Для тернарних алюмосиліцидів ZrAl_{2,55}Si_{0,45} та HfAl_{2,55}Si_{0,45} склади статистичних сумішей атомів Al та Si приймали рівними співвідношенням цих елементів, отриманим у результаті локального рентгеноспектрального аналізу сплавів та не уточнювали, з огляду на подібні значення факторів розсіювання рентгенівського проміння атомами Al i Si.

Рис. 3.21. Елементарні комірки та координаційні многогранники атомів у структурах сполук ZrAl₃ і ZrAl_{2,52}Ge_{0,48}.

У структурах тернарних сполук з більшими за розміром атомів Sn i Sb спостерігається тенденція до впорядкування атомів Al i Sn чи Sb у двох ПСТ (4*d* i 2*b*) просторової групи *I4/mmm*. Слід зазначити, що повне впорядкування атомів *p*-елементів привело б до реалізації надструктури типу UCuAl₂ (СП *tI*8, ПГ *I4/mmm*), яка є тернарним варіантом структурного типу TiAl₃. Нижче приведено результати уточнення кристалічної структури тернарного алюмостаніду ZrAl_{2,68}Sn_{0,32} [136,141] методом Рітвельда за дифрактограмою однофазного зразка Zr₂₅Al₆₇Sn₈ (рис. 3.22).

Таблиця 3.9

Міжатомні віддалі та координаційні числа атомів у структурах

A		δ,	Å	ICH
AT	ОМИ	ZrAl ₃	HfAl ₃	КЧ
T (Zr/Hf)	-4 Al1	2,836	2,820	
	- 4 Al3	2,864	2,847	12
	-4 Al2	3,030	3,008	
All	-4 T	2,836	2,820	
	-4 Al2	2,974	2,961	12
	- 4 Al3	2,918	2,893	
Al2	-4 Al2	2,835	2,819	
	-4 Al1	2,974	2,961	12
	-4 T	3,030	3,008	
A13	- 4 Al3	2,835	2,819	
	-4 T	2,864	2,847	12
	-4 Al1	2,918	2,893	

сполук ZrAl₃ та HfAl₃ (стандартні відхилення < 0,01 Å).

Таблиця 3.10

Міжатомні віддалі та координаційні числа атомів у структурах

сполук ZrAl_{2,52}Ge_{0,48} та HfAl_{2,40}Ge_{0,60} (стандартні відхилення < 0,01 Å).

Arong		δ,	$\delta,$ Å		
AT	ОМИ	$ZrAl_{2,52}Ge_{0,48}$	$HfAl_{2,40}Ge_{0,60}$	МЧ	
T (Zr/Hf)	- 4 <i>M</i> 2	2,775	2,770	12	
	- 8 <i>M</i> 1	2,994	2,971	12	
<i>M</i> 1	- 4 <i>M</i> 1	2,775	2,770	10	
	- 4 <i>M</i> 2	2,994	2,971	12	
	-4 T	2,994	2,971		
M2	-4 T	2,775	2,770	12	
	- 8 <i>M</i> 1	2,994	2,971		

Рис. 3.22. Експериментальна (точки), розрахована (лінія) та різницева (внизу рисунка) дифрактограма зразка Zr₂₅Al₆₇Sn₈ (проміння Cu Kα₁). Вертикальні риски вказують на положення відбиттів сполуки ZrAl_{2,68}Sn_{0,32}.

Деталі експерименту і кристалографічні характеристики для $ZrAl_{2,68}Sn_{0,32}$ приведено у табл. 3.11, координати та ізотропні параметри зміщення атомів – у табл. 3.12. Хімічний склад фази, визначений локальним рентгеноспектральним аналізом ($Zr_{1,00(2)}Al_{2,68(2)}Sn_{0,32(2)}$) відповідає складу, отриманому з дифракційного експерименту.

Подібне часткове впорядкування атомів Al i Sn чи Sb, тобто статистичне заміщення атомів Al на атоми Sn чи Sb виключно у позиції 2*b*, спостерігається і у структурах тернарних сполук HfAl_{2,64}Sn_{0,36}, ZrAl_{2,65}Sb_{0,35} і HfAl_{2,67}Sb_{0,33}.

У потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°С тернарні фази зі структурами типів TiAl₃ і UCuAl₂ з цирконієм є індивідуальними тернарними сполуками, тоді як фази з гафнієм, що існують при 600°С як тернарні сполуки, можуть бути частинами твердих розчинів на основі високотемпературної модифікації бінарної сполуки HfAl₃ (CT TiAl₃), стабілізованих атомами Si, Ge, Sn чи Sb при нижчих температурах.

Деталі експерименту і кристалографічні характеристики для $ZrAl_{2,68}Sn_{0,32}$

Уточнений склад сполуки	ZrAl _{2,682(4)} Sn _{0,318(4)}	
Параметри елементарної комірки: <i>a</i> , <i>c</i> , Å	3,98855(18), 9,0848(4)	
Об'єм елементарної комірки V, Å ³	144,526(12)	
Густина $D_{\rm X}$, г см ⁻³	4,426	
Параметр текстури / [напрям]	0,981(4) / [110]	
Дифрактометр	STOE Stadi P	
Інтервал 2 <i>θ</i> , °; крок, °	6-106; 0,015	
Параметри профілю: U, V, W	0,116(7), 0,018(6), 0,0227(13)	
Параметр змішування η	0,343(7)	
Параметри асиметрії Р ₁ , Р ₂	0,064(5), 0,0174(16)	
Фактори розбіжності: <i>R</i> _В	0,0380	
$R_{ m p}, R_{ m wp}, \chi^2$	0,0327, 0,0461, 1,53	

(CT UCuAl₂, C Π *tI*8, $\Pi\Gamma$ *I*4/*mmm*, *Z* = 2)

Таблиця 3.12

Координати та ізотропні параметри зміщення атомів у структурі сполуки ZrAl_{2.68}Sn_{0.32} (CT UCuAl₂, СП *tI*8, ПГ *I*4/*mmm*)

Атом	ПСТ	x	У	Ζ	B_{i30} , Å ²
Zr	2 <i>a</i>	0	0	0	0,69(5)
Al	4 <i>d</i>	0	1/2	1/4	1,27(14)
M^1	2b	0	0	1/2	1,23(8)

Примітка: $^{1}M = 0,841(2)$ Al+0,159(2)Sn.

3.2.2. Новий структурний тип ZrAl_{0,23}Ge_{1,77}

У потрійних системах Zr–Al–{Si,Ge} на ізоконцентратах 33,3 ат.% Zr знайдено тернарні сполуки постійного складу ZrAl_{0,33}Si_{1,67} і ZrAl_{0,23}Ge_{1,77}. Подібність дифрактограм відповідних зразків між собою свідчила про їхню ізоструктурність. З огляду на близькі значення факторів розсіювання рентгенівського проміння атомами Al i Si, i, відповідно, утрудненість прецизійного визначення їхнього розподілу у структурі, кристалічну структуру було визначено для алюмоґерманіду ZrAl_{0.23}Ge_{1,77} [142,143].

Параметри структури ZrAl_{0,23}Ge_{1,77} визначено рентгенівським дифракційним методом монокристалу. Кристал у формі пластинки було відібрано зі зразка Zr_{33,3}Al₁₀Ge_{56,7}, а масив дифракційних даних отримано на дифрактометрі Rigaku AFC7. Після корекції експериментальних даних на поглинання, кристалічну структуру сполуки було визначено прямими методами у просторовій групі $I4_1/amd$ та уточнено методом найменших квадратів за допомогою пакету програм WinCSD (табл. 3.13). Склад тернарної сполуки (Zr_{0,99(2)}Al_{0,25(3)}Ge_{1,75(3)}) було незалежно визначено за допомогою енергодисперсійного рентгенівського спектрального аналізу (рис. 3.23).

Таблиця 3.13

Уточнений склад сполуки	ZrAl _{0,230(5)} Ge _{1,770(5)}
СТ	ZrAl _{0,23} Ge _{1,77}
СП	<i>tI</i> 32-8
ΠΓ	I4 ₁ /amd
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	3,8013(2) 29,893(3)
Об'єм елементарної комірки V, Å ³	431,95(9)
Кількість формульних одиниць Z	8
Густина $D_{\rm X}$, г см ⁻³	6,950
Коефіцієнт поглинання µ, мм ⁻¹	30,16
Кількість відбиттів: виміряних незалежних (з F > 3 σ(F))	1474 254
Фактор розбіжності $R_{e\kappa B}$	0,0392
Інтервал <i>h</i> , <i>k</i> , <i>l</i>	$-5 \le h \le 2, -5 \le k \le 5, -43 \le l \le 43$
Граничний кут вимірювання $ heta, ^{\circ}$	33,2
Фактори розбіжності: <i>R</i> <i>wR</i> <i>S</i>	0,0311 0,0320 1,01

Деталі експерименту і кристалографічні характеристики для ZrAl_{0.23}Ge_{1.77}

Рис. 3.23. Зображення поверхні зразка Zr_{33,3}Al₁₀Ge_{56,7} у вторинних електронах (зліва) і у зворотно розсіяних електронах (справа).

Кристалічна структура тернарного алюмогерманіду ZrAl_{0,23}Ge_{1,77} є першим представником нового структурного типу (СП *tI*32-8, ПГ *I*4₁/*amd*), який характеризується частково впорядкованим розміщенням атомів Al i Ge. Координати та параметри зміщення атомів у структурі ZrAl_{0,23}Ge_{1,77} приведено у табл. 3.14.

На початковому етапі було визначено координати атомів, які відповідали моделі структурного типу TiAl_{0,29}Ge_{1,71} (СП *tI*24, ПГ *I*4₁/*amd*, *a* = 3,6959, *c* = 28,345 Å [91]). Однак, уточнені ізотропні параметри зміщення атомів Ge у ПСТ 8*e* у цій моделі були у кілька разів більшими за інші, а відповідні еліпсоїди були витягнутими вздовж кристалографічного напряму [001]. Це вказало на можливість позиційного невпорядкування атомів Ge навколо ПСТ 8*e*. Це невпорядкування атомів було успішно змодельовано розщепленням позиції 8*e* на дві позиції 8*e* вздовж [001] – положення Ge1A та Ge1B. Після попередніх уточнень КЗП обох цих положень було зафіксовано як 0,5. Віддаль між сусідніми ПСТ 8*e* ($\delta_{Ge1A-Ge1B}$) становить 0,254(3) Å.

Таблиця 3.14

Координати та параметри зміщення атомів (Å²) у структурі сполуки $ZrAl_{0.23}Ge_{1.77}$ (СТ $ZrAl_{0.23}Ge_{1.77}$ СП tI32-8, ПГ $I4_1/amd$,

Атом	ПСТ		x			у		Ζ		B_{i30}
Zr	8e		0		1	/4	0,1	9867(4)		0,47(3)
M^1	4 <i>b</i>		0		1	/4		3/8		0,67(4)
Ge1A ²	8e		0		1	/4	0,0)2789(6)		0,35(4)
Ge1B ²	8e		0		1	/4	0,	0364(1)	(0,26(12)
Ge2	4 <i>a</i>		0		3	5/4		1/8		0,69(3)
Атом	B_{11}		B_{22}	Ŀ	B ₃₃	<i>B</i> ₁₂		<i>B</i> ₁₃		B_{23}
Zr	0,34(5)	(),27(5)	0,8	31(4)	0		0		0
M^1	0,50(6)	(),50(6)	1,0	2(9)	0		0		0
Ge1A ²	0,39(8)	(),31(8)	0,3	6(6)	0		0		0
Ge1B ²	0,3(2)		0,2(2)	0,24	4(12)	0		0		0
Ge2	0,51(4)	(),51(4)	1,0	5(7)	0		0		0

a = 3,8013(2), c = 29,893(3) Å)

Примітки: ${}^{1}M = 0,461(9)Al + 0,539(9)Ge$; ${}^{2}K3\Pi$ (Ge1A) = K3П (Ge1B) = 0,5.

У структурі сполуки ZrAl_{0,23}Ge_{1,77}, як і у структурі TiAl_{0,29}Ge_{1,71}, атоми перехідного металу займають одне положення 8*e*, тоді як атоми *p*-елементів (Al i Ge) частково впорядковано займають інші ПСТ: статистична суміш атомів Al i Ge – ПСТ 4*b*, а атоми Ge – ПСТ 8*e* і 4*a*. Структурні типи ZrAl_{0,23}Ge_{1,77} і TiAl_{0,29}Ge_{1,71} є тернарними частково впорядкованими варіантами псевдо-бінарного структурного типу Zr_{0,75}AlSi_{1,25} ((Zr_{0,75}Al_{0,25})(Al_{0,38}Si_{0,62})₂, СП *tl*24, ПГ *I*4₁/*amd*, a = 3,71, c = 29,35 Å [90]), у якому всі ПСТ зайняті статистичними сумішами атомів.

Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки ZrAl_{0,23}Ge_{1,77} зображено на рис. 3.24, а міжатомні віддалі приведено у табл. 3.15. Значення міжатомних віддалей корелюють з сумами атомних радіусів відповідних компонентів, за винятком атомів Ge, які утворюють у структурі зигзагоподібні ланцюги.

Міжатомні віддалі та координаційні числа атомів

	Атоми	δ , Å	КМ
Zr	$-4 \text{ Ge1B}^{a} (4 \text{ Ge1A}^{1})$	2,725(1) (2,778(1))	
	– 2 Ge2	2,909(1)	
	$-2 M^2$	2,909(1)	1.6
	$-2 \text{ Ge1A} (2 \text{ Ge1B}^{1})$	3,037(2) (3,239(3))	10
	- 2 Zr	3,610(1)	
	-4 Zr	3,801(1)	
M^{b}	- 4 Ge2	2,688(1)	0
	-4 Zr	2,909(1)	8
Ge1A	$(1 \text{ Ge}1\text{B}^{1})$	(0,254(3))	
	$-2 \text{ Ge1A}^{1} (2 \text{ Ge1B}^{1})$	2,528(2) (2,703(2))	0
	-4 Zr	2,778(1)	8
	- 2 Zr	3,037(2)	
Ge1B	(1 GelA^1)	(0,254(3))	
	- 2 Ge1A (2 Ge1B ¹)	2,703(2) (2,889(3))	0
	-4 Zr	2,725(1)	8
	- 2 Zr	3,239(3)	
Ge2	$-4 M^2$	2,688(1)	0
	-4 Zr	2,909(1)	8

у структурі сполуки ZrAl_{0,23}Ge_{1,77}

Примітки: ${}^{1}M = 0,461(9)Al + 0,539(9)Ge$; ${}^{2}K3\Pi$ (Ge1A) = K3П (Ge1B) = 0,5.

Атоми Zr координовані 16 атомами, які утворюють поліедр складу <u>Zr</u> M_2 Ge₈Zr₆. Його можна описати як кубооктаедр M_2 Ge₈Zr₂ з чотирма додатковими атомами Zr. Атоми найближчого координаційного оточнення статистичної суміші атомів Al i Ge (*M*) і атомів Ge2 утворюють 8-вершинники <u>M</u>Ge₄Zr₄ і <u>Ge2</u> M_4 Zr₄, відповідно, які побудовані з двох тригональних призм, зрощених взаємноперпендикулярно через прямокутну грань (gyrobifastigium) – комбінація тетраедра T_4 і квадрата M_4 . Координаційним многогранником атомів Ge1A є тригональна призма Zr₆ з двома додатковими атомами Ge навпроти прямокутних граней. Навколо атомів Ge1B утворюється подібний поліедр, але з іншим розподілом міжатомних віддалей.

Рис. 3.24. Елементарна комірка та координаційні многогранники атомів у структурі сполуки ZrAl_{0,23}Ge_{1,77}.

Згідно з систематикою структурних типів П.І. Крип'якевича, структура ZrAl_{0,23}Ge_{1,77} належить до класів структур з тригонально-призматичною чи тетраедричною координацією атомів малого розміру.

3.2.3. Сполуки T_2 AlSb₃ (T = Zr, Hf) з структурою типу Zr_2 CuSb₃

У системах {Zr,Hf}–Al–Sb на ізоконцентратах 33,3 ат.% Zr та Hf встановлено існування тернарних сполук постійного складу Zr_2AlSb_3 і Hf₂AlSb₃. Подібність дифрактограм відповідних зразків між собою свідчила про їхню ізоструктурність. Нижче приведено деталі визначення кристалічної структури на прикладі сполуки Hf₂AlSb₃ [144].

Характер розташування та інтенсивність відбиттів на дифрактограмі зразка Hf_{33,3}Al_{16,7}Sb₅₀ вказали на можливу реалізацію структурного типу UAs₂, до якого належить структура високотемпературної модифікації бінарного антимоніду HfSb₂

(СТ UAs₂, СП *tP*6, ПГ *P*4/*nmm*, a = 3,916, c = 8,678 Å [77]). Крім того, з літератури відомо про існування у спорідненій системі Hf–Ga–Sb ізостехіометричної тернарної сполуки Hf₂GaSb₃ зі структурою типу Zr₂CuSb₃ [145]:СП *tP*6, ПГ *P*-4*m*2, a = 3,89841, c = 8,62650 Å для Hf₂GaSb₃ [117]. Структурний тип Zr₂CuSb₃ є тернарним впорядкованим варіантом бінарного структурного типу UAs₂. Кристалічну структуру тернарної сполуки Hf₂AlSb₃ уточнено методом Рітвельда за дифрактограмою однофазного зразка Hf_{33,3}Al_{16,7}Sb₅₀, виходячи з координат атомів у структурі сполуки Hf₂GaSb₃.

Рис. 3.25. Експериментальна (точки), розрахована (лінії) та різницева (внизу рисунка) дифрактограми зразка Hf_{33,3}Al_{16,7}Sb₅₀ (проміння Cu Kα₁). Вертикальні риски вказують на положення відбиттів сполуки Hf₂AlSb₃.

Встановлено, що кристалічна структура тернарної сполуки Hf₂AlSb₃ належить до структурного типу Zr₂CuSb₃. Експериментальна, розрахована та різицева дифрактограми зразка складу Hf₃₃Ga_{16,5}Sb_{49,5} представлені на рис. 3.25. Деталі експерименту та результати уточнення структури сполуки Hf₂AlSb₃ подано у табл. 3.16. Склад сполуки було підтверджено локальним рентгеноспектральним аналізом.

Склад сполуки		Hf ₂ AlSb ₃
СТ		Zr ₂ CuSb ₃
СП		tP6
ΠΓ		<i>P-4m2</i>
Параметри елементарної	комірки: <i>a</i> , <i>c</i> , Å	3,9021(2), 8,6510(5)
Об'єм елементарної комі	рки <i>V</i> , Å ³	131,74(2)
Густина D_X , г см ⁻³		9,443
Параметр текстури / [нап	рям]	0,977(4) / [110]
Дифрактометр		STOE Stadi P
Інтервал 2 <i>0</i> , °; крок, °		6-106; 0,015
Параметри профілю:	<i>U</i> , <i>V</i> , <i>W</i>	0,110(8), -0,036(6), 0,0162(16)
Параметр змішування	η	0,441(13)
Параметри асиметрії	P_1, P_2	0,061(9), 0,0057(15)
Фактори розбіжності:	$R_{ m B}$	0,0382
	$R_{ m p}, R_{ m wp}, \chi^2$	0,0436, 0,0491, 1,73

Деталі експерименту і кристалографічні характеристики для Hf₂AlSb₃

Координати та ізотропні параметри зміщення атомів у структурі сполуки Hf₂AlSb₃ приведено у табл. 3.17. Вміст елементарної комірки та координаційні многогранники атомів зображено на рис. 3.26. Міжатомні віддалі та координаційні числа атомів у структурі сполуки Hf₂AlSb₃ подано у табл. 3.18.

Таблиця 3.17

Координати та ізотропні параметри зміщення атомів у структурі сполуки Hf₂AlSb₃

$(C1 \Sigma1_2Cu50_3, C11 11 0, 111 1$						
Атом	ПСТ	x	у	Ζ	B_{i30} , Å ²	
Hf	2g	0	1/2	0,2636(2)	0,43(2)	
Al	1 <i>b</i>	1/2	1/2	0	1,08(10)	
Sb1	2g	0	1/2	0,6157(3)	0,74(7)	
Sb2	1 <i>a</i>	0	0	0	0,82(8)	

(CT Zr₂CuSb₃, СП *tP*6, ПГ *P*-4*m*2, *a* = 3,9021(2), *c* = 8,6510(5) Å)

Рис. 3.26. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Hf₂AlSb₃.

Таблиця 3.18

Міжатомні віддалі та координаційні числа атомів у структурі сполуки Hf₂AlSb₃

Атоми		δ , Å	КЧ
Hf	Hf -4 Sb1		
	- 2 Al	3,001(1)	0
	-2 Sb2	3,001(1)	9
	– 1 Sb1	3,046(3)	
Al – 4 Sb2		2,759(1)	0
	-4 Hf	3,001(1)	0
Sb1	– 4 Hf	2,950(1)	
	– 1 Hf	3,046(3)	
	(-4 Sb2)	3,409(2)	17
	(-2 Al)	3,855(2)	1 /
	(- 2 Sb1)	3,855(2)	
	(-4 Sb2)	3,902(1)	
Sb2	-4 Al	2,759(1)	0
	– 4 Hf	3,001(1)	8

Атоми Hf оточені сімома атомами Sb та двома атомами Al, які утворюють тришапкові тригональні призми (чи тетрагональні антипризми з одним додатковим атомом) складу Al₂Sb₇. Координаційні многогранники атомів Al та Sb2 утворені з восьми атомів у вигляді зрощених через прямокутну грань двох тригональних призм (взаємноперпендикулярні осі призм), утворючи фігури *gyrobifastigium* складів Hf₄Sb₄ і Hf₄Al₄, відповідно. Найближче оточення атомів Sb1 складається з п'яти атомів Hf, які утворюють тетрагональну піраміду, а координаційним многогранником є 17-вершинники <u>Sb1</u>Hf₅Al₂Sb₁₀, які можна представити як пентагональні призми з сімома додатковими атомами.

Найкоротшими міжатомними віддалями у структурі сполуки Hf₂AlSb₃ є віддалі Al–Sb2 (2,759(1) Å) і Hf–Sb1 (2,950(1) Å). Ці значення є меншими за суми атомних радіусів Al та Sb ($r_{Al} + r_{Sb} = 1,43 + 1,59 = 3,02$ Å) і Hf та Sb ($r_{Hf} + r_{Sb} = 1,56 + 1,59 = 3,15$ Å), відповідно, і може вказувати на частку ковалентності у зв'язках Al–Sb (сума ковалентних радіусів Al i Sb: $r_{Al} + r_{Sb} = 1,18 + 1,40 = 2,58$ Å) і Hf–Sb (сума ковалентних радіусів Hf i Sb: $r_{Hf} + r_{Sb} = 1,44 + 1,40 = 2,84$ Å).

З огляду на існування ВТМ бінарної сполуки HfSb₂ (СТ UAs₂, СП tP6, ПГ P4/nmm), можна припустити, що Hf₂AlSb₃ утворюється шляхом стабілізації атомами Al бінарної сполуки HfSb₂ до нижчих температур, а впорядкування атомів Al і Sb приводить до реалізації тернарної надструктури – СТ Zr₂CuSb₃. Слід зазначити, що у системі Zr–Sb бінарної сполуки з такою структурою знайдено не було.

3.2.4. Новий структурний тип Zr₁₁Al_{3,34}Ge_{6,66}

У системах {Zr,Hf}–Al–Ge при 600°С при вмісті 52,4 ат.% Zr і Hf встановлено існування тернарних сполук точкових складів $Zr_{11}Al_{3,34}Ge_{6,66}$ і Hf₁₁Al_{3,50}Ge_{6,50}. Їхні кристалічні структури визначено рентгенівським дифракційним методом порошку. Нижче приведено експериментальні результати для $Zr_{11}Al_{3,34}Ge_{6,66}$.

Склад тернарної сполуки у системі Zr–Al–Ge (Zr_{11,0(1)}Al_{3,3(2)}Ge_{6,7(2)}), визначений локальним рентгенівським спектральним аналізом (рис. 3.27), а також характер розташування та інтенсивність її відбиттів на дифрактограмах низки зразків дозволили припустити реалізацію структурного типу Ho₁₁Ge₁₀ (СП *t1*84, ПГ *I4/mmm*) [146], чи однієї з його чисельних тернарних впорядкованих похідних.

Рис. 3.27. Зображення поверхні шліфа зразка Zr₅₄Al₁₀Ge₃₆ у вторинних електронах (електронний мікроскоп PEMMA-102-02). Основна фаза (світло-сіра) –

Zr_{11,0(1)}Al_{3,3(2)}Ge_{6,7(2)}, темні ділянки – пори у зразку.

Уточнення параметрів профілю та структури здійснено методом Рітвельда за масивом рентгенівських дифракційних даних трифазного зразка $Zr_{54}Al_{10}Ge_{36}$, отриманих на дифрактометрі ДРОН-2.0М (проміння Fe Ka). Експериментальну, розраховану та різницеву дифрактограми зразка зображено на рис. 3.28. Умови експерименту та результати уточнення кристалічної структури індивідуальних фаз приведено у табл. 3.19, а координати та ізотропні параметри зміщення атомів – у табл. 3.20.

Кристалічна структура тернарного алюмоґерманіду з уточненим складом $Zr_{11}Al_{3,34(3)}Ge_{6,66(3)}$ належить до структурного типу $Ho_{11}Ge_{10}$ і характеризується частково впорядкованим розташуванням атомів *p*-елементів у п'яти правильних системах точок: атоми Al займають положення 8*h*, атоми Ge – положення 4*d*, тоді як три інші ПСТ (16*m*, 8*j* і 4*e*) зайняті статистичними сумішами атомів Al і Ge. Слід зазначити, що склади статистичних сумішей є різними. Надструктури з таким заповненням ПСТ структурного типу Ho₁₁Ge₁₀ досі в літературі описано не було.

Рис. 3.28. Експериментальна (точки), розрахована (лінія) та різницева (внизу рисунка) дифрактограми зразка Zr₅₄Al₁₀Ge₃₆ (проміння Fe Kα). Вертикальні риски вказують на положення відбиттів індивідуальних фаз.

Таблиця 3.19

Деталі експерименту і кристалографічні характеристики індивідуальних фаз у зразку Zr₅₄Al₁₀Ge₃₆ (дифрактометр ДРОН-2.0М, проміння Fe *K*α)

Склад сполуки	Zr ₁₁ Al _{3,34} Ge _{6,66}	Zr ₅ Ge ₄	Zr ₅ AlGe ₃
Вміст (мас.%)	61,0(9)	32,7(7)	6,3(1)
СТ	Zr ₁₁ Al _{3,34} Ge _{6,66}	Zr_5Si_4	Hf_5CuSn_3
СП	<i>tI</i> 84	<i>tP</i> 36	<i>hP</i> 18
ПГ	I4/mmm	$P4_{1}2_{1}2$	<i>P</i> 6 ₃ / <i>mcm</i>
Параметри елементарної комірки:			
a, Å	10,3679(9)	7,2473(8)	8,1037(19)
<i>c</i> , Å	14,8529(18)	13,1524(19)	5,567(2)
Об'єм елементарної комірки V , Å ³	1596,6(3)	690,81(14)	321,64(18)
Кількість формульних одиниць Z	4	4	2
Густина D_X , г см ⁻³	6,564	7,181	7,240
Параметр текстури / [напрям]	0,976(10) / [001]	_	_
Фактор розбіжності <i>R</i> _В	0,0798	0,0960	0,0845
Параметри профілю: U, V, W	0,21	(5), -0,22(7), 0,1	2(2)
Параметр змішування η		0,74(3)	
Фактори розбіжності: $R_{ m p}, R_{ m wp}, \chi^2$	0,	0460, 0,0510, 4,9	92

Таблиця 3.20

Координати та ізотропні параметри зміщення атомів у структурі сполуки

			, , , (,	(= -)	
Атом	ПСТ	x	У	Z	B_{i30} , Å ²
Zr1	16 <i>n</i>	0	0,2512(10)	0,3131(16)	0,53(7)
Zr2	16 <i>n</i>	0	0,3374(13)	0,1008(8)	0,48(8)
Zr3	8 <i>h</i>	0,3181(11)	0,3181(11)	0	0,56(6)
Zr4	4 <i>e</i>	0	0	0,1701(16)	0,50(7)
Al	8 <i>h</i>	0,147(3)	0,147(3)	0	1,16(8)
$M1^{-1}$	16 <i>m</i>	0,2098(12)	0,2098(12)	0,1786(13)	1,10(8)
M2 ²	8 <i>j</i>	0,144(2)	1/2	0	1,12(8)
M3 ³	4 <i>e</i>	0	0	0,3873(19)	1,03(9)
Ge	4 <i>d</i>	0	1/2	1/4	0,95(7)

 $Zr_{11}Al_{3,34}Ge_{6,66}$ (CT $Zr_{11}Al_{3,34}Ge_{6,66}$, C Π *t1*84, $\Pi\Gamma$ *14/mmm*,

a = 10,3679(9), *c* = 14,8529(18) Å)

Примітки: ${}^{1}M1 = 0,19(2)Al+0,81(2)Ge; {}^{2}M2 = 0,37(2)Al+0,63(2)Ge;$

 $^{3}M3 = 0,48(2)Al+0,52(2)Ge.$

Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки $Zr_{11}Al_{3,34}Ge_{6,66}$ зображено на рис. 3.29. Координаційними многогранниками атомів Zr є 15- і 17-вершинники <u>Zr1M</u>₆GeZr₈, <u>Zr2Al</u>₂M₄GeZr₈, <u>Zr3AlM</u>₆Zr₁₀ і <u>Zr4Al</u>₄M₅Zr₈ (пентагональні призми з додатковими 5 чи 7 вершинами), атомів Al – тетрагональні антипризми з трьома додатковими атомами <u>AlM</u>₂Zr₇Al₂, атомів Ge – тетрагональні антипризми <u>Ge</u>Zr₈, a статистичних сумішей атомів Al і Ge – тригональні призми з трьома додатковими навпроти прямокутних граней <u>M2</u>Zr₈M і тетрагональні антипризми з двома додатковими атомами атомами навпроти квадратних граней – <u>M1</u>Zr₈AlM і <u>M3</u>Zr₉M. Міжатомні віддалі в межах координаційних многогранників приведено у табл. 3.21.

Кристалічна структура тернарного алюмогерманіду $Hf_{11}Al_{3,50}Ge_{6,50}$ (a = 10,1764(8), c = 14,1729(13) Å) характеризується подібним заповненням ПСТ просторової групи *I4/mmm* атомами Hf, Al i Ge.

108

Таблиця 3.21

Міжатомні віддалі та координаційні числа атомів у структурі сполуки

			3,34066,66		
Атоми	$\delta, \text{\AA}$	КЧ	Атоми	δ , Å	КЧ
Zr1 – 1 Ge	2,745(13)		Al–1 Zr3	2,51(3)	
$-1 M3^{3}$	2,828(17)		$-2 M1^{1}$	2,81(2)	
$-2 M2^{2}$	2,981(19)		- 4 Zr2	2,91(3)	11
$-2 M 1^{1}$	2,984(19)		- 2 Al	3,05(4)	
$-1 M 1^{1}$	3,038(13)	1.5	– 2 Zr4	3,32(3)	
- 1 Zr2	3,277(19)	15	$M1^1 - 1 M1^1$	2,43(2)	
- 2 Zr2	3,336(15)		– 2 Zr2	2,796(16)	
- 1 Zr4	3,361(19)		- 1 Al	2,81(2)	
- 2 Zr3	3,342(19)		– 2 Zr1	2,984(19)	10
-2 Zr1	3,683(10)		– 2 Zr1	3,038(13)	
$Zr2 - 2M2^{2}$	2,704(16)		- 1 Zr4	3,079(12)	
- 1 Ge	2,784(12)		- 1 Zr3	3,092(19)	
$-2 M 1^{1}$	2,796(16)		$M2^{2}-2$ Zr3	2,611(18)	
-2 Al	2,91(3)		- 4 Zr2	2,704(16)	
- 1 Zr2	2,994(17)	1.5	– 2 Zr1	2,981(19)	9
-1 Zr1	3,277(19)	- 15	$-1 M2^{2}$	2,99(3)	
-2 Zr1	3,336(15)		$M3^{3}-4$ Zr1	2,828(17)	
- 1 Zr2	3,372(19)		- 4 Zr3	3,149(18)	10
- 2 Zr3	3,627(12)		- 1 Zr4	3,23(4)	
-1 Zr4	3,646(15)		$-1 M3^{3}$	3,35(4)	
Zr3 – 1 Al	2,51(3)		Ge–4Zr1	2,745(13)	0
$-2 M2^{2}$	2,611(18)		- 4 Zr2	2,784(12)	8
$-2 M 1^{1}$	3,092(19)				•
$-2 M3^{3}$	3,149(18)	17			
-4 Zr1	3,342(19)				
-4 Zr2	3,627(12)				
- 2 Zr3	3,772(16)				
$Zr4 - 4 M1^{1}$	3,079(12)				
$-1 M3^{3}$	3,23(4)		н .		
-4 Al	3,32(3)	17	Примітки:	A1+0.91(2)C	
-4 Zr1	3,361(19)		$^{2}M^{2} = 0.37(2)$	A1 + 0.81(2)Ge; A1 + 0.63(2)Ge;	
-4 Zr2	3,646(15)		$^{3}M3 = 0,48(2)$	Al+0,52(2)Ge.	

Zr₁₁Al_{3,34}Ge_{6,66}

Рис. 3.29. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Zr₁₁Al_{3,34}Ge_{6,66}.

Згідно з систематикою структурних типів П.І. Крип'якевича, структури Zr₁₁Al_{3,34}Ge_{6,66} і Hf₁₁Al_{3,50}Ge_{6,50} слід віднести до класів структур з тригональнопризматичною та тетрагонально-антипризматичною координацією атомів малого розміру.

3.2.5. Фази T₅AlM₃ (T = Zr, Hf; M = Ge, Sn, Sb) з структурою типу Hf₅CuSn₃

У системах {Zr,Hf}–Al–{Ge,Sn,Sb} при 600°С існують тернарні фази складу T_5 Al M_3 (T = Zr, Hf; M = Ge, Sn, Sb) зі структурою типу Hf₅CuSn₃ (СП *hP*18, ПГ *P*6₃/*mcm*). Фази Zr₅AlGe₃ (a = 8,104(3), c = 5,654(2) Å) [147,148], Hf₅AlGe₃ (a = 8,0641(3), c = 5,5874(2) Å) і Hf₅AlSb₃ (a = 8,4983(4), c = 5,7459(2) Å) є

індивідуальними тернарними сполуками, тоді як Zr₅AlSn₃ (a = 8,6184(19), c = 5,8656(14) Å) [136] і Zr₅AlSb₃ (a = 8,6234(17), c = 5,8802(12) Å) – граничними складами твердих розчинів заміщення Zr₅Al_x M_{4-x} (M =Sn, Sb), а Hf₅AlSn₃ (a = 8,6105(15), c = 5,8337(11) Å) – граничним складом твердого розчину включення Hf₅Al_xSb₃. Нижче приведено експериментальні результати визначення параметрів структури тернарної сполуки Zr₅AlGe₃ рентгенівським дифракційним методом монокристалу.

Кристал у формі призми було відібрано зі зразка $Zr_{55,6}Al_{11,1}Ge_{33,3}$, а масив дифракційних даних отримано на дифрактометрі Rigaku AFC7. Після корекції експериментальних даних на поглинання, кристалічну структуру сполуки було визначено прямими методами у просторовій групі *P*6₃/*mcm* та уточнено методом найменших квадратів за допомогою пакету програм WinCSD (табл. 3.22). Склад тернарної сполуки ($Zr_{4,99(2)}Al_{1,01(3)}Ge_{3,00(3)}$) було незалежно визначено за допомогою енергодисперсійного рентгенівського спектрального аналізу (рис. 3.30).

Рис. 3.30. Зображення поверхні шліфа зразка Zr_{55,6}Al_{11,1}Ge_{33,3} у вторинних електронах (електронний мікроскоп PEMMA-102-02). Основна фаза (cipa) – Zr₅AlGe₃, світлі вкраплення – сплав Вуда, темні ділянки – пори у зразку.

Кристалічна структура тернарного алюмоґерманіду Zr₅AlGe₃ належить до структурного типу Hf₅CuSn₃ (СП *hP*18, ПГ *P*6₃/*mcm*) і характеризується впорядкованим розміщенням атомів Zr, Al і Ge. CT Hf₅CuSn₃ є тернарним впроядкованим варіантом СТ Ti₅Ga₄ (СП *hP*18, ПГ *P*6₃/*mcm*), який у свою чергу є

структурою включення до СТ Mn₅Si₃ (СП *hP*16, ПГ *P*6₃/*mcm*). Координати та параметри зміщення атомів у структурі сполуки Zr₅AlGe₅ приведено у табл. 3.23.

Таблиця 3.22

Склад сполуки	Zr ₅ AlGe ₃		
СТ	Hf5CuSn3		
СП	hP18		
ΠΓ	<i>P</i> 6 ₃ / <i>mcm</i>		
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	8,104(3) 5,564(2)		
Об'єм елементарної комірки V, Å ³	321,62(18)		
Кількість формульних одиниць Z	2		
Густина <i>D</i> _X , г см ⁻³	7,241		
Коефіцієнт поглинання µ, мм-1	22,2		
Кількість відбиттів: виміряних незалежних (з <i>F</i> > 3σ(<i>F</i>))	1558 248		
Фактор розбіжності $R_{e_{KB}}$	0,0392		
Інтервал <i>h</i> , <i>k</i> , <i>l</i>	$-10 \le h \le 9, -6 \le k \le 12, -8 \le l \le 8$		
Граничний кут вимірювання $ heta, \circ$	33,4		
Фактори розбіжності: <i>R</i> <i>wR</i> <i>S</i>	0,0357 0,0375 1,01		

Деталі експерименту і кристалографічні характеристики для Zr₅AlGe₃

Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки Zr_5AlGe_3 зображено на рис. 3.31. Навколо атомів Zr утворюються 11- і 14 вершинники $Zr1Al_2Ge_5Zr_4$ і $Zr2Ge_6Zr_8$, відповідно. Дефектний антикубооктаедр $Zr1Al_2Ge_5Zr_4$ можна також описати як деформовану пентагональну дипіраміду складу Ge_5Al_2 з чотирма додатковими атомами Zr, чи як тришапкову тригональну призму складу Ge_5Zr_4 з двома додатковими атомами Al. Многогранник Франка-Каспера $Zr2Ge_6Zr_8$ можна описати як деформовану гексагональну призму складу Ge_6Zr_6 з двома додатковими атомами Zr навпроти

шестикутних граней. Атоми найближчого координаційного оточення атомів Al також утворюють 14-вершинник Франка-Каспера <u>Al</u>Ge₆Al₂Zr₆, який можна описати як ромбододекаедр, утворений кубом складу Ge₆Al₂ та октаедром складу Zr₆. Атоми Ge координовані дев'ятьма атомами Zr, двома атомами Al і двома атомами Ge, які утворюють 13-вершинник Франка-Каспера <u>Ge</u>Al₂Ge₂Zr₉. Його можна описати як деформований антикубооктаедр з одним додатковим атомом, чи як тришапкову тригональну призму складу Zr₉ з чотирма додатковими атомами.

Таблиця 3.23

Атом	ПСТ		x			у		Z		B_{i30}
Zr1	6g		0,2567	7(2)		0		1/4		1,21(4)
Zr2	4 <i>d</i>		1/3		2	2/3		0		0,87(3)
Al	2b		0			0		0		1,27(14)
Ge	6g		0,6100(2) 0			1/4		1,05(4)		
Атом	B_{11}		B_{22}	l	B ₃₃	<i>B</i> ₁₂		<i>B</i> ₁₃		<i>B</i> ₂₃
Zr1	1,25(4)	(),87(5)	1,0	9(5)	0,43(2)	0		0
Zr2	0,86(3)	(),86(3)	0,5	9(5)	0,43(2)	0		0
Al	1,4(2)		1,4(2)	0,	6(2)	0,69(9)	0		0
Ge	0,96(4)	(),94(5)	0,9	94(5)	0,47(3)	0		0

Координати та параметри зміщення атомів (Å²) у структурі сполуки Zr₅AlGe₃ (CT Hf₅CuSn₃, СП *hP*18, ПГ *P*6₃/*mcm*, a = 8,104(3), c = 5,564(2) Å)

Міжатомні віддалі у структурі сполуки Zr_5AlGe_3 приведено у табл. 3.24. Їхні значення корелюють з сумами атомних радіусів компонентів і узгоджуються з міжатомними віддалями у структурах бінарних алюмінідів і ґерманідів цирконію. Найкоротшими віддалями у структурі є віддалі між атомами Zr1 і Al (2,5151(8) Å), значення яких є меншими за суми атомних радіусів Zr і Al. Іншою особливістю структури сполуки Zr_5AlGe_3 є екстримально короткі віддалі Zr2-Zr2 (2,8270(8) Å), що вказує на сильну взаємодію між атомами цирконію.

Рис. 3.31. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Zr₅AlGe₃.

Таблиця 3.24

КЧ	δ , Å	Атоми	КЧ	δ , Å	Атоми
	2,5151(8)	Al – 6 Zr1		2,5151(8)	Zr1 - 2A1
14	2,8270(8)	– 2 Al		2,782(1)	– 2 Ge
	3,4616(9)	– 6 Ge	11	2,864(1)	– 1 Ge
	2,782(1)	Ge – 2 Zr1		3,0261(8)	– 2 Ge
	2,864(1)	– 2 Zr1		3,3702(9)	- 4 Zr2
12	2,8752(8)	-4 Zr2		2,8270(8)	Zr2 – 2 Zr2
15	3,0261(8)	– 1 Zr1	14	2,8752(8)	– 6 Ge
	3,3430(9)	– 2 Ge		3,3702(9)	- 6 Zr1
l	3,4616(9)	-2 Al			

Міжатомні віддалі та координаційні числа атомів у структурі сполуки Zr₅AlGe₃

3.2.6. Сполуки Hf₅Al_{3-x} M_x (M = Si, Ge, Sn, Sb) з структурою типу Mn₅Si₃

У системах Hf–Al–{Si,Ge,Sn,Sb} при 600°С на ізоконцентратах 62,5 ат.% Hf і при невеликому вмісті Si, Ge, Sn чи Sb (до 5 ат.%) існують тернарні сполуки Hf₅Al_{3-x} M_x зі структурою типу Mn₅Si₃ (СП *hP*16, ПГ *P*6₃/*mcm*). Результати уточнення кристалічної структури приведено нижче на прикладі сполуки Hf₅Al_{2,49}Sb_{0,51}.

Кристалічну структуру тернарної сполуки $Hf_5Al_{2,49}Sb_{0,51}$ уточнено методом Рітвельда за дифрактограмою двофазного зразка $Hf_{60}Al_{35}Sb_5$, який, крім основної фази, містив 12,4(5) мас.% бінарної сполуки Hf_4Al_3 . Експериментальна, розрахована та різницева дифрактограми зразка складу $Hf_{60}Al_{35}Sb_5$ представлені на рис. 3.32. Деталі експерименту та результати уточнення структури сполуки $Hf_5Al_{2,48}Sb_{0,52}$ подано у табл. 3.25. Склад сполуки було підтверджено локальним рентгеноспектральним аналізом ($Hf_{5,05(6)}Al_{2,52(6)}Sb_{0,48(6)}$).

Рис. 3.32. Експериментальна (точки), розрахована (лінія) та різницева (внизу рисунка) дифрактограми зразка Hf₆₀Al₃₅Sb₅ (проміння Fe Kα). Вертикальні риски вказують на положення відбиттів індивідуальних фаз.

Кристалічна структура тернарної сполуки з уточненим складом $Hf_5Al_{2,49(6)}Sb_{0,51(6)}$ належить до структурного типу Mn_5Si_3 (ПГ $P6_3/mcm$) і характеризується невпорядкованим розташуванням атомів *p*-елементів: атоми Hf займають положення 6*g* і 4*d*, а статистична суміш атомів Al і Sb – положення 6*g*. Координати та ізотропні параметри зміщення атомів приведено у табл. 3.26.

Деталі експерименту і кристалографічні характеристики індивідуальних фаз у

Склад сполуки	$Hf_5Al_{2,49}Sb_{0,51}$	Hf ₄ Al ₃		
Вміст, мас.%	87,6(7)	12,4(5)		
СТ	Mn ₅ Si ₃	Zr ₄ Al ₃		
СП	<i>hP</i> 16	hP7		
ПГ	P6 ₃ /mcm	P6/mmm		
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	8,0934(5) 5,6560(5)	5,335(2) 5,428(2)		
Об'єм елементарної комірки V, Å ³	320,85(4)	133,8(3)		
Кількість формульних одиниць Z	2	1		
Густина $D_{\rm X}$, г см ⁻³	10,580	9,869		
Параметр текстури / [напрям]	0,873(11) / [110]	_		
Фактор розбіжності <i>R</i> _В	0,0682	_		
Параметри профілю: U V W	0,23 0,05 0,02	0,231(4) 0,056(8) 0,021(3)		
Параметр змішування η	0,82	26(4)		
Фактори розбіжності: R_{p} R_{wp} χ^{2}	0,0 0,0 1,	0,0509 0,0574 1,18		

зразку $Hf_{60}Al_{35}Sb_5$ (дифрактометр ДРОН-2.0М, проміння Fe $K\alpha$)

Таблиця 3.26

Координати та ізотропні параметри зміщення атомів у структурі сполуки $Hf_5Al_{2,49}Sb_{0,51}$ (СТ Mn_5Si_3 , СП *hP*16, ПГ *P*6₃/*mcm*, *a* = 8,0934(5), *c* = 5,6560(5) Å)

Атом	ПСТ	x	У	Z	$B_{ m i30}$, Å ²
Hf1	6g	0,2413(2)	0	1/4	0,49(8)
Hf2	4 <i>d</i>	1/3	2/3	0	0,53(8)
M^1	6g	0,6157(3)	0	1/4	0,94(9)

Примітка: $^{1} M = 0,83(2)$ Al+0,17(2)Sb.

Вміст елементарної комірки та координаційні многогранники атомів у структурі сполуки Hf₅Al_{2,49}Sb_{0,51} зображено на рис. 3.33. Координаційними многогранниками атомів Hfl є 15-вершинники <u>Hfl</u>M₅Hf₁₀, які можна описати як пентагональні призми складу Hf₁₀ з п'ятьма додатковими атомами статистичної суміші *M*. Навколо атомів Hf2 формуються 14-вершинники, які можна описати як деформовані гексагональні призми складу Hf₆M₆ з двома додатковими атомами Hf навпроти шестикутних граней. Координаційними многогранниками атомів статистичної суміші *M* є дефектні ікосаедри складу M₂Hf₉. Їх також можна описати як тришапкові тригональні призми складу Hf₉ з двома додатковими атомами. Міжатомні віддалі у структурі сполуки Hf₅Al_{2,49}Sb_{0,51} приведено у табл. 3.27. Найкоротшими віддалями у структурі є віддалі між атомами Hfl і статистичною сумішшю атомів *M* ($\delta_{Hfl-M} = 2,723(2)$ Å), а також між атомами Hf ($\delta_{Hf2-Hf2} = 2,8270(8)$ Å), що вказує на сильну взаємодію. Значення інших міжатомних віддалей корелюють з відповідними сумами атомних радіусів компонентів.

Рис. 3.33. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Hf₅Al_{2,49}Sb_{0,51}.

Міжатомні віддалі та координаційні числа атомів у структурі сполуки

A	гоми	δ , Å	КЧ
Hf1	$-2 M^{1}$	2,723(2)	
	$- 1 M^{1}$	3,030(3)	
	$-2 M^{1}$	3,056(1)	15
	– 2 Hfl	3,383(2)	15
	– 4 Hfl	3,437(1)	
	– 4 Hf2	3,441(1)	
Hf2	– 2 Hf2	2,828(1)	
	$- 6 M^{1}$	2,887(1)	14
	– 6 Hfl	3,441(1)	

Hf ₅ Al _{2,49} Sb _{0,51} КЧ Атоми		
КЧ	Атоми	

A	Атоми	δ , Å	КЧ
M^{1}	– 2 Hf1	2,723(2)	
	– 4 Hf2	2,887(1)	
	– 1 Hf1	3,030(3)	11
	– 2 Hf1	3,056(1)	
	$-2 M^{1}$	3,392(2)	

Примітка: $^{1} M = 0,83(2)$ Al+0,17(2)Sb.

Кристалічні структури ізоструктурних сполук $Hf_5Al_{2,54}Si_{0,46}$ (a = 8,0321(3), c = 5,6247(2) Å), $Hf_5Al_{2,70}Ge_{0,30}$ (a = 8,0880(3), c = 5,6511(2) Å) і $Hf_5Al_{2,70}Sn_{0,30}$ (a = 8,0910(4), c = 5,6515(4) Å) характеризуються подібним розташуванням атомів у ПСТ просторової групи $P6_3/mcm$, і подібними координаційними многогранниками атомів.

Згідно з систематикою структурних типів П.І. Крип'якевича, структурний тип Mn₅Si₃ слід віднести до структур з тригонально-призматичною координацією атомів малого розміру.

3.2.7. Сполуки Zr₅Al_{3-x} M_x (M = Si, Ge, Sn, Sb) i Hf₅Al_{3-x} M_x (M = Sn, Sb) з структурою типу Nb₅SiSn₂

У системах Zr–Al–{Si,Ge,Sn,Sb} при 600°С на ізоконцентратах 62,5 ат.% Zr і при невеликому вмісті Si, Ge, Sn чи Sb (до 7 ат.%) існують тернарні сполуки постійного складу $Zr_5Al_{2,44}Si_{0,56}$, $Zr_5Al_{2,70}Ge_{0,30}$, $Zr_5Al_{2,71}Sn_{0,29}$ і $Zr_5Al_{2,55}Sb_{0,45}$ зі структурою типу Nb₅SiSn₂ (СП *tI*32, ПГ *I*4/*mcm*).

Кристалічну тернарної сполуки $Zr_5Al_{2.70}Ge_{0.30}$ визначено структуру рентгенівським дифракційним методом порошку за дифрактограмою зразка Zr_{62,5}Al₃₅Ge_{2,5} (дифрактометр STOE Stadi P, проміння Cu $K\alpha_1$, інтервал 6° $\leq 2\theta \leq$ 110°, крок сканування 0,015°) [149,150]. Положення та інтенсивності відбиттів основної фази засвідчили реалізацію структурного типу W₅Si₃, чи його похідного. Уточнення кристалографічних параметрів тернарної фази Zr₅Al_{2.70}Ge_{0.30} провели методом Рітвельда, виходячи з координат атомів високотемпературної модифікації сполуки Zr₅Al₃ (СТ W₅Si₃, СП *tI*32, ПГ *I*4/*mcm*, *a* = 11,049, *c* = 5,396 Å [17]), які було взято за початкову модель. Крім основної фази, зразок містив 4,3(2) мас.% алюмініду Zr₂Al та 4,0(2) мас.% алюмоґерманіду Zr₅Al_{0.8}Ge_{2.2}, склад якого відповідає граничному складу твердого розчину заміщення на основі ґерманіду Zr₅Ge₃. Склад тернарної сполуки (Zr_{4.96(8)}Al_{2.72(8)}Ge_{0.32(8)}) попередньо було визначено локальним енергодисперсійним рентгенівським спектральним аналізом (рис. 3.34).

Рис. 3.34. Зображення поверхні шліфа зразка Zr_{62,5}Al₃₅Ge_{2,5} у вторинних електронах (електронний мікроскоп PEMMA-102-02). Основна фаза – тернарна сполука Zr_{4,96(8)}Al_{2,72(8)}Ge_{0,32(8)}, темні ділянки – пори у зразку.

Експериментальна, розрахована та різницева дифрактограми зразка складу Zr_{62,5}Al₃₅Ge_{2,5} зображені на рис. 3.35. Деталі експерименту та результати уточнення структури сполуки Zr₅Al_{2,70}Ge_{0,30} наведено у табл. 3.28.

119

Деталі експерименту і кристалографічні характеристики індивідуальних фаз у

Фаза	$Zr_5Al_{2,70(2)}Ge_{0,30(2)}$	Zr ₂ Al	Zr ₅ Al _{0,8} Ge _{2,2}			
Вміст фази, мас.%	91,7(6)	4,3(2)	4,0(2)			
СТ	Nb ₅ SiSn ₂	Co _{1,75} Ge	Mn ₅ Si ₃			
СП	<i>tI</i> 32	hP6	<i>hP</i> 16			
ПГ	I4/mcm	$P6_3/mmc$	P6 ₃ /mcm			
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	11,0145(7) 5,3921(4)	4,8936(5) 5,9284(9)	8,1561(11) 5,6841(10)			
Об'єм комірки <i>V</i> , Å ³	654,17(8)	122,95(3)	327,46(9)			
Кількість формульних одиниць Z	4	2	2			
Густина <i>D</i> _X , г·см ⁻³	5,591	5,657	6,696			
Параметр текстури G [напрям]	0,885(2) [001]	_	_			
Фактор розбіжності <i>R</i> _В	0,0603	0,0901	0,0986			
Параметри профілю: U V W	0,095(9) 0,029(9) 0,0075(19)					
Параметр змішування		0,908(9)				
Параметри асиметрії Р1, Р2	0,015(6), -0,0048(13)					
Фактори розбіжності: $R_{\rm p}$ $R_{\rm wp}$ χ^2		0,0369 0,0401 1,82				

зразку $Zr_{62,5}Al_{35}Ge_{2,5}$ (дифрактометр STOE Stadi P, проміння Cu $K\alpha_1$)

Координати та ізотропні параметри зміщення атомів у структурі сполуки $ZrAl_{2,70}Ge_{0,30}$ наведено у табл. 3.29. Кристалічна структура сполуки $Zr_5Al_{2,70}Ge_{0,30}$ (ПГ *I4/mcm*) характеризуються двома ПСТ, зайнятими атомами Zr, та двома ПСТ, зайнятими атомами *p*-елементів, причому положення 4*a* зайняте виключно атомами Al, тоді як положення 8*h* – статистичною сумішшю атомів Al і Ge. Часткове впорядкування атомів *p*-елементів зумовлює утворення тернарної надструктури до бінарного структурного типу W_5Si_3 – CT Nb₅SiSn₂. Вміст

елементарної комірки та координаційні многогранники атомів у структурі сполуки Zr₅Al_{2,70}Ge_{0,30} зображено на рис. 3.36.

Рис. 3.35. Експериментальна (точки), розрахована (лінія) та різницева (внизу рисунка) дифрактограми зразка Zr_{62,5}Al₃₅Ge_{2,5} (проміння Cu Kα₁). Вертикальні риски вказують на положення відбиттів індивідуальних фаз.

Таблиця 3.29

Координати та ізотропні параметри зміщення атомів у структурі сполуки

Zr₅Al_{2,70(2)}Ge_{0,30(2)} (CT Nb₅SiSn₂, CΠ *tI*32, ΠΓ *I*4/*mcm*,

a = 11,0145(7), c = 5,3921(4) Å)

Атом	ПСТ	x	У	Z	B_{i30} , Å ²
Zr1	16 <i>k</i>	0,08050(12)	0,21911(13)	0	0,61(3)
Zr2	4 <i>b</i>	0	1/2	1/4	0,49(7)
M^1	8 <i>h</i>	0,1663(3)	0,6663(3)	0	1,28(19)
Al	4 <i>a</i>	0	0	1/4	1,01(7)

Примітка: $^{1}M = 0.851(8)Al + 0.149(8)Ge$.

Рис. 3.36. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Zr₅Al_{2,70}Ge_{0,30}.

У структурі сполуки Zr₅Al_{2,70}Ge_{0,30} атоми Zr оточені 15 і 14 атомами, які формують 15- та 14-вершинники Франка-Каспера <u>Zr1</u>Al₂M₄Zr₉ і <u>Zr2</u>M₄Zr₁₀, відповідно. Атоми статистичної суміші *M* оточені десятьма атомами Zr, які утворюють поліедри <u>M</u>Zr₁₀, які можна описати як дефектний ікосаедр. Навколо атомів Al утворюється двошапкова тетрагональна антипризма. Міжатомні віддалі та координаційні числа атомів у структурі сполуки Zr₅Al_{2,70}Ge_{0,30} наведено у табл. 3.30. Міжатомні віддалі корелюють з сумами атомних і металічних радіусів компонентів і відповідними віддалями у структурах бінарних алюмінідів і германідів цирконію. Особливістю структури є коротка віддаль між атомами Zr ($\delta_{Zr2-Zr2} = 2,6961(2)$ Å), засвідчуючи сильну взаємодію між ними.

Кристалічні структури ізоструктурних сполук $Zr_5Al_{2,44}Si_{0,56}$ (a = 11,0454(4), c = 5,3942(2) Å), $Zr_5Al_{2,71}Sn_{0,29}$ (a = 11,0530(9), c = 5,4071(5) Å) i $Zr_5Al_{2,55}Sb_{0,45}$ (a = 11,0120(9), c = 5,3913(5) Å) характеризуються подібним розташуванням атомів у ПСТ просторової групи *I4/mcm* і подібними координаційними многогранниками атомів. Отже, кристалічна структура сполук $Zr_5Al_{2,44}Si_{0,56}$, $Zr_5Al_{2,70}Ge_{0,30}$, $Zr_5Al_{2,71}Sn_{0,29}$ і $Zr_5Al_{2,55}Sb_{0,45}$ належить до типу Nb₅SiSn₂, що є тернарним впорядкованим варіантом бінарного структурного типу W_5Si_3 . Оскільки, згідно з літературними відомостями, бінарний алюмінід Zr_5Al_3 з цією структурою стабільний за вищих температур, і, згідно з результатами нашого дослідження, він не існує при 600°С, ці фази можна вважати індивідуальними тернарними сполуками при 600°С, що, можливо, утворюються шляхом стабілізації атомами Si, Ge, Sn чи Sb твердих розчинів заміщення на основі Zr_5Al_3 до нижчих температур.

Таблиця 3.30

Міжатомні віддалі та координаційні числа атомів у структурі сполуки

Атоми	δ , Å	КЧ	A	гоми	δ , Å	ΚĽ
$Zr1 - 1 M^1$	2,849(5)		Zr2 –	- 2 Zr2	2,6961(2)	
- 2 Al	2,9031(13)			$-4 M^{1}$	2,920(4)	14
$-1 M^{1}$	2,997(5)			- 8 Zr1	3,4893(13)	
- 1 Zr1	3,121(2)		M^1 –	- 2 Zr1	2,849(5)	
$-2 M^{1}$	3,123(2)	15		- 2 Zr2	2,920(4)	10
- 2 Zr1	3,2270(11)		-	– 2 Zr1	2,997(5)	10
- 2 Zr1	3,4540(13)		-	-4 Zr1	3,123(2)	
-2 Zr ²	2 3,4893(13)			– 2 Al	2,6961(2)	10
– 2 Zr1	3,636(2)		Al .	– 8 Zr1	2,9031(13)	

 $Zr_5Al_{2,70}Ge_{0,30}$

Примітка: $^{1}M = 0,851(8)A1 + 0,149(8)Ge$.

Якщо у системах Zr–Al–{Si,Ge} вищеописані тернарні сполуки зі структурою типу Nb₅SiSn₂ є єдиними тернарними сполуками, що існують на ізоконцентратах 62,5 ат.% Zr, то у системах Zr–Al–{Sn,Sb}, окрім таких сполук, при меншому вмісті Al існує ще по одній тернарній сполуці з такою ж кристалічною структурою – Zr₅Al_{1,68-0,40}Sn_{1,32-2,60} і Zr₅Al_{1,55-0,65}Sb_{1,45-2,35}, відповідно. Ізоструктурні тернарні сполуки також були знайдені у системах з Hf: Hf₅Al_{1,33-0,78}Sn_{1,67-2,22} і Hf₅Al_{1,52-0,74}Sb_{1,48-2,26}. Нижче приведено результати детального визначення кристалічних структур тернарних сполук системи Zr–Al–Sn, що існують на ізоконцентраті 62,5 ат.% Zr при 600°C [136,141,151].

Кристалічні структури тернарних сполук Zr₅Al_{2,71}Sn_{0,29} і Zr₅Al_{1,68-0,40}Sn_{1,32-2,60} визначено рентгенівським дифракційним методом порошку за масивами даних, отриманих на дифрактометрі STOE Stadi P від зразків Zr_{62.5}Al_{32.5}Sn₅ i Zr_{62.5}Al₅Sn_{32.5}. Сплав Zr_{62.5}Al_{32.5}Sn₅ містив три фази: дві тернарні фази, Zr₅Al_{2.71}Sn_{0.29} і Zr₅Al_{1.68}Sn_{1.32} (багатий на алюміній граничний склад області гомогенності тернарної сполуки Zr₅Al_{1,68-0,40}Sn_{1,32-2,60}) зі структурами, похідними від СТ W₅Si₃, і бінарний алюмінід Zr₂Al (СТ Со_{1,75}Ge). Однофазний зразок Zr_{62,5}Al₅Sn_{32,5} містив тернарну фазу Zr₅Al_{0.40}Sn_{2.60} (багатий на олово граничний склад області гомогенності тернарної сполуки Zr₅Al_{1.68-0.40}Sn_{1.32-2.60}). Таким чином було визначено параметри структури для тернарної сполуки постійного складу Zr₅Al_{2.71}Sn_{0.29} і для граничних складів області гомогенності тернарної сполуки Zr₅Al_{1.68-0.40}Sn_{1.32-2.60}. Параметри профілів дифрактограм і структури індивідуальних фаз уточнено методом Рітвельда Деталі експерименту та результати (рис. 3.37). уточнення структури індивідуальних фаз у зразках Zr_{62.5}Al_{32.5}Sn₅ і Zr_{62.5}Al₅Sn_{32.5} наведено у табл. 3.31. Склади тернарних фаз, визначені локальним енергодисперсійним рентгенівським $(Zr_{5,01(4)}Al_{2,69(5)}Sn_{0,31(6)},$ спектральним аналізом $Zr_{5,04(4)}Al_{1,66(6)}Sn_{1,37(6)}$ i Zr_{4.97(8)}Al_{0.43(7)}Sn_{2.60(9)}) (рис. 3.38) узгоджуються зі складами, отриманими в результаті уточнення параметрів структур.

Кристалічні структури тернарних сполук $Zr_5Al_{2,71}Sn_{0,29}$ і $Zr_5Al_{1,68-0,40}Sn_{1,32-2,60}$ належать до тетрагонального структурного типу Nb₅SiSn₂ (СП *tl*32, ПГ *l4/mcm*) і характеризуюються чотирма ПСТ (табл. 3.32). В обох структурах ПСТ 16*k* і 4*b* зайняті атомами Zr, тоді як заповнення ПСТ 8*h* і 4*a* атомами *p*-елементів є різним в залежності від складу фази. У структурі багатої на Al тернарної сполуки точкового складу $Zr_5Al_{2,71}Sn_{0,29}$ ПСТ 8*h* зайнята статистичною сумішшю атомів Al і Sn, а ПСТ 4*a* — виключно атомами Al, подібно до структури тернарної сполуки Zr₅Al_{2,70}Ge_{0,30}, описаної вище. Розподіл атомів *p*-елементів у структурі тернарної сполуки з областю гомогенності Zr₅Al_{1,68-0,40}Sn_{1,32-2,60} змінюється в залежності від вмісту Al і Sn: у структурі багатого на Al граничного складу області гомогенності сполуки обидві ПСТ 8*h* і 4*a* зайняті статистичними сумішами атомів Al і Sn, тоді як у структурі багатого на Sn граничного складу області гомогенності сполуки

ПСТ 8*h* зайнята виключно атомами Sn a ПСТ 4*a* – статистичною сумішшю атомів Al i Sn.

Рис. 3.37. Експериментальні (точки), розраховані (лінії) та різницеві (внизу рисунків) дифрактограми зразків Zr_{62,5}Al_{32,5}Sn₅ (*a*) і Zr_{62,5}Al₅Sn_{32,5} (б) (проміння Cu Kα₁). Вертикальні риски вказують на положення відбиттів індивідуальних фаз.

125

Деталі експерименту і кристалографічні характеристики індивідуальних фаз у

зразках Zr_{62,5}Al_{32,5}Sn₅ i Zr_{62,5}Al₅Sn_{32,5}

(дифрактометр STOE Stadi P, проміння Cu Ka1)

Склад зразка	2	$Zr_{62,5}Al_{32,5}Sn_5$		Zr _{62,5} Al ₅ Sn _{32,5}
Уточнений склад фази	$Zr_5Al_{2,71(1)}Sn_{0,29(1)}$	$Zr_5Al_{1,68(3)}Sn_{1,32(3)}$	Zr ₂ Al	$Zr_5Al_{0,40(1)}Sn_{2,60(1)}$
Вміст фази, мас.%	54,4(5)	38,5(6)	7,1(1)	100
СТ	Nb ₅ SiSn ₂	W ₅ Si ₃	Co _{1,75} Ge	Nb ₅ SiSn ₂
СП	<i>tI</i> 32	<i>tI</i> 32	hP6	<i>tI</i> 32
ПГ	I4/mcm	I4/mcm	P6 ₃ /mmc	I4/mcm
Параметри елементарної комірки: <i>a</i> , Å <i>c</i> , Å	11,0530(9) 5,4071(5)	11,1005(9) 5,4537(5)	4,8842(8) 5,9186(10)	11,1829(12) 5,5449(6)
Об'єм комірки <i>V</i> , Å ³	660,58(10)	672,01(10)	330,23(11)	693,43(13)
Кількість формульних одиниць Z	4	4	2	4
Густина <i>D</i> _X , г · см - ³	5,670	6,503	5,656	7,257
Параметр текстури <i>G</i> [напрям]	0,933(3) / [001]	0,888(4) / [110]	_	0,971(3) / [110]
Фактор розбіжності <i>R</i> в	0,0500	0,0362	_	0,0581
Параметри профілю: U V W		$0,253(17) \\ 0,055(14) \\ 0,007(3)$		
Параметр змішування η		0,727(10)		0,742(11)
Параметри асиметрії: P1 P2	0,056(10) 0,008(3)			0,022(8) 0,0037(18)
		0,0314 0,0416 1,53		0,0366 0,0421 1,62

Рис. 3.38. Зображення поверхнонь шліфів зразків $a - Zr_{62,5}Al_{32,5}Sn_5$ (темна фаза – $Zr_{5,01(4)}Al_{2,69(5)}Sn_{0,31(6)}$, світла фаза – $Zr_{5,04(4)}Al_{1,66(6)}Sn_{1,37(6)}$) і $\delta - Zr_{62,5}Al_5Sn_{32,5}$ (світла фаза – $Zr_{4,97(8)}Al_{0,43(7)}Sn_{2,60(9)}$) у вторинних електронах

(електронний мікроскоп TESCAN Vega 3 LMU).

Таблиця 3.32

Координати та ізотропні параметри зміщення атомів

у структурах сполук Zr₅Al_{2,71(1)}Sn_{0,29(1)} i Zr₅Al_{1,68(3)-0,40(1)}Sn_{1,32(3)-2,60(1)}

Атом	ПСТ	x	У	Z	B_{i30} , Å ²					
$Zr_5Al_{2,71(1)}Sn_{0,29(1)}$										
Zr1	16 <i>k</i>	0,08003(17)	0,21966(16)	0	0,59(5)					
Zr2	4 <i>b</i>	0	1/2	1/4	0,61(9)					
0,854(5)Al+0,146(5)Sn	8h	0,1666(4)	0,6666(4)	1/4	1,1(2)					
Al	4 <i>a</i>	0	0	1/4	0,9(3)					
	Zr_{5}	$Al_{1,68(3)}Sn_{1,32(3)}$								
Zr1	16 <i>k</i>	0,0792(2)	0,2172(3)	0	0,63(7)					
Zr2	4 <i>b</i>	0	1/2	1/4	0,45(12)					
0,427(16)Al + 0,573(16)Sn	8h	0,1643(3)	0,6643(3)	1/4	1,4(2)					
0,827(15)Al + 0,173(15)Sn	4 <i>a</i>	0	0	1/4	1,5(3)					
	$Zr_5Al_{0,40(1)}Sn_{2,60(1)}$									
Zr1	16 <i>k</i>	0,07826(19)	0,21869(18)	0	0,31(4)					
Zr2	4 <i>b</i>	0	1/2	1/4	0,54(9)					
Sn	8h	0,16467(14)	0,66467(14)	1/4	1,03(6)					
0,596(10)Al + 0,404(10)Sn	4 <i>a</i>	0	0	1/4	1,1(2)					

Координаційні многогранники у структрі сполуки Zr₅Al_{2.71}Sn_{0.29} є подібними до поліедрів у структурі сполуки Zr₅Al_{2.70}Ge_{0.30} (див. рис. 3.36), тоді як у структурі $Zr_5Al_{0.40}Sn_{2.60}$, внаслідок перерозподілу атомів *p*-елеменів у ПСТ 8*h* і 4*a*, їхні склади зазнають змін (рис. 3.39). Міжатомні віддалі у структурі Zr₅Al_{0.40}Sn_{2.60} приведено у табл. 3.33. Їхні значення корелюють з відповідними сумами атомних радіусів, за коротших віддалей між Zr винятком дещо атомами $(\delta_{(Zr2-Zr2)})$ 2,772(1) Å), Zr i Sn ($\delta_{(Zr1-Sn)} = 2,938(3)$ i 3,014(3), $\delta_{(Zr2-Sn)} = 2,950(1)$ Å) i атомами статистичної суміші M ($\delta_{(M-M)} = 2,772(1)$ Å), що вказує на значну взаємодію між відповідними атомами.

тернарні фази (CT Nb_5SiSn_2) Чотири ізоструктурні v системах Zr,Hf-Al-Sn,Sbхарактеризуються областями гомогенності вздовж ізоконцентрат 62,5 ат.% Zr чи Hf. Їхні протяжності було встановлено за допомогою рентгенівського дифракційного (фазового та структурного) і рентгенівського спектрального аналізів. Параметри елементарної комірки в межах областей гомогенності тернарних сполук змінюються практично лінійно, відповідно до розмірів атомів *р*-елементів (табл. 3.34).

Рис. 3.39. Елементарна комірка та координаційні многогранники атомів у структурі сполуки Zr₅Al_{0.40}Sn_{2.60}.

Міжатомні віддалі та координаційні числа атомів у структурі сполуки

A	гоми	δ , Å	КЧ	ŀ	Атоми	δ , Å	КЧ
Zr1	- 1 Sn	2,938(3)		Zr2	- 2 Zr2	2,772(1)	
	$-2 M^{1}$	2,944(2)			-4 Sn	2,950(1)	14
	- 1 Sn	3,014(3)			– 8 Zr1	3,547(2)	-
	– 1 Zr1	3,211(3)		Sn	– 2 Zr1	2,938(3)	
	- 2 Sn	3,213(1)	15		– 2 Zr2	2,950(1)	10
	- 2 Zr1	3,279(2)			- 2 Zr1	3,014(3)	10
	-2 Zr1	3,547(2)			-4 Zr1	3,213(1)	
	- 2 Zr2	3,552(2)		M 1	$-2 M^{1}$	2,772(1)	10
	-2 Zr1	3,673(3)		IVI -	- 8 Zr1	2,944(2)	10

Zr₅Al_{0,40}Sn_{2,60}

Примітка: $^{1}M = 0,596(10)Al + 0,404(10)Sn.$

Таблиця 3.34

Параметри елементарної комірки для сполук

 T_5 Al_{3-x} M_x (T = Zr, Hf; M = Sn, Sb, CT Nb₅SiSn₂, CII *tI*32, III *I*4/*mcm*)

Склад	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
1	2	3	4
	Zr ₅ Al _{1,68-0} ,	$_{40}$ Sn _{1,32-2,60}	
$Zr_5Al_{1,68}Sn_{1,32}$	11,1005(9)	5,4537(5)	672,01(10)
$Zr_5Al_{1,20}Sn_{1,80}$	11,1271(2)	5,4829(12)	678,9(3)
$Zr_5Al_{0,80}Sn_{2,20}$	11,1553(2)	5,5133(12)	686,1(3)
$Zr_5Al_{0,40}Sn_{2,60}$	11,1829(12)	5,5449(6)	693,43(13)
	$Hf_{5}Al_{1,33-0,3}$	$_{78}$ Sn _{1,67-2,22}	
$Hf_{5}Al_{1,33}Sn_{1,67}$	10,9627(8)	5,4138(4)	650,63(9)
$Hf_5Al_{1,20}Sn_{1,80}$	10,9684(9)	5,4195(5)	652,00(11)
$Hf_{5}Al_{0,78}Sn_{2,22}$	11,0291(9)	5,4913(5)	667,98(10)

129

1	2	3	4							
Zr ₅ Al _{1,55-0,65} Sb _{1,45-2,35}										
$Zr_5Al_{1,55}Sb_{1,45}$	10,9810(9)	5,4153(5)	652,99(10)							
$Zr_5Al_{1,20}Sb_{1,80}$	11,012(2)	5,4247(13)	657,8(3)							
$Zr_5Al_{0,80}Sb_{2,20}$	11,044(2)	5,4361(12)	663,0(3)							
Zr ₅ Al _{0,65} Sb _{2,35}	11,0731(12)	5,4482(6)	668,02(12)							
	$Hf_5Al_{1,52-0}$,74Sb1,48-2,26								
$Hf_5Al_{1,52}Sb_{1,48}$	10,8908(8)	5,5114(4)	653,70(9)							
$Hf_5Al_{1,20}Sb_{1,80}$	10,9081(19)	5,5243(12)	657,3(3)							
Hf ₅ Al _{0,74} Sb _{2,26}	10,9344(9)	5,5403(5)	662,40(10)							

Згідно з систематикою структурних типів П.І. Крип'якевича, структурні типи W₅Si₃ і Nb₅SiSn₂ належать до структур з тетрагонально-антипризматичною координацією атомів малого розміру.

РОЗДІЛ 4

ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ

4.1. Особливості взаємодії компонентів у системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb}

Проведені нами дослідження взаємодії компонентів у потрійних системах $\{Zr,Hf\}-Al-\{Si,Ge,Sn,Sb\}$ є частиною систематичних досліджень металічних систем за участю перехідних *d*-металів та *p*-елементів 13-15 груп періодичної системи, які здійснюють на кафедрі неорганічної хімії Львівського національного університету імені Івана Франка.

Ізотермічні перерізи (600°С) діаграм стану потрійних систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} побудовано вперше. Лише для системи Zr-Al-Si у літературі є відомості про ізотермічні перерізи її діаграми стану при інших температурах – 700 і 1200°С [88]. Порівнюючи характер взаємодії компонентів у системі Zr-Al-Si при 600, 700 і 1200°С можна виділити як певні подібності, так і відмінності. Так, при всіх температурах встановлено існування тернарної сполуки ZrAl_{3-x}Si_x (ZrAl_{2,55}Si_{0,45} при 600°С, ZrAl_{2,7-2,4}Si_{0,3-0,6} при 1200°С) зі структурою типу TiAl₃, яка перебуває у рівновазі з Al і бінарним цирконій триалюмінідом. Для тернарної сполуки на ізотермічному перерізі діаграми стану при 1200°С зображено невелику область гомогенності вздовж ізоконцентрати 25 ат.% Zr. При всіх зазначених температурах бінарні алюмініди цирконію не розчиняють помітної кількості Si, за винятком Zr₅Al₃ і Zr₂Al при 1200°C, на основі яких утворюються протяжний обмежений твердий розчин заміщення $Zr_5Al_{3-x}Si_x$ (x = 0.2,8) і HPTP $Zr_2Al_{1-x}Si_x$ (x = 0-1). У літературі повідомлено, що бінарна сполука Zr₅Al₃ зі CT Mn₅Si₃ утворюється при стабілізації домішками третього компонента і, згідно з результами нашого дослідження, при 600°С не існує. Натомість, при температурах, вищих за 1000°С існує бінарний алюмінід з такою стехіометрією, однак відмінною кристалічною структурою (СТ W5Si3). Утворення ж НРТР між бінарними

сполуками Zr₂Al i Zr₂Si при 1200°С зумовлено їхньою ізоструктурністю при цій температурі (CT Cu₂Al), тоді як при 600 і 700°С для бінарного алюмініду Zr₂Al характерною є модифікація зі CT Co_{1,75}Ge. Подібність діаграм стану ситеми Zr–Al–Si при 600 і 700°С проявляється також в існуванні обмежених твердих розчинів заміщення на основі бінарних силіцидів ZrSi₂, ZrSi, Zr₅Si₄ i Zr₅Si₃, однак протяжність цих твердих розчинів при різних температурах є різною. Діаграми стану відрізняються також за стехіометрією і кристалічною структурою деяких бінарних і тернарних сполук, що зумовлює відмінність у фазових рівновагах. Так, при 600°С на ізоконцентраті 33,3 ат.% Zr встановлено існування тернарної сполуки ZrAl_{0,23}Ge_{1,77}, тоді як при 700°С сполуку з подібною структурою (CT Zr_{0,75}AlSi_{1,25}) виявлено на ізоконцентраті 25 ат.% Zr. Крім того, лише при 1200°С встановлено існування тернарного алюмосиліциду ZrAl_{0,2}Si_{0,8} зі CT TII.

Однакова температура ізотермічних перерізів (600°С) діаграм стану потрійних систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} дозволяє провести пряме порівняння систем між собою і виділити певні особливості взаємодії компонентів. Усі системи (рис. 4.1 і 4.2) характеризуються доволі складним характером взаємодії компонентів, що проявляється в утворенні різної кількості тернарних сполук та різній розчинності третього компонента в бінарних сполуках. Загалом, у системах з Ge утворюється більша кількість тернарних сполук у порівнянні з системами з Si, а у системах зі Sb – більше тернарних сполук, порівняно з системами зі Sn. Спільним для усіх систем є існування тернарних сполук на ізоконцентратах 25 ат.% Zr чи Hf при великому вмісті Al. Іншою спільною ознакою усіх досліджених систем є відсутність розчинності третього компонента у бінарних алюмінідах цирконію і гафнію. Однак, для систем Hf-Al-{Si,Ge} характерним є утворення HPTP на ізоконцентратах 66,7 ат.% Нf, що зумовлено, першочергово, ізоструктурністю бінарних сполук Hf₂Al, Hf₂Si i Hf₂Ge (CT CuAl₂). Слід зазначити, що інших пар ізоструктурних бінарних сполук у досліджених системах немає. У всіх системах з Zr та у двох системах з Hf (Hf-Al-{Si,Ge}) на основі бінарних силіцидів, германідів, станідів чи антимонідів зі СТ Мп₅Si₃ утворюються тверді розчини заміщення вздовж ізоконцентрат 62,5 ат.% Zr чи Hf. Спостерігається тенденція до зменшення

протяжності твердих розчинів заміщення на Al у відповідних сполуках при переході від Si до Ge, Sn i Sb. У системі Hf–Al–Sn на основі бінарної сполуки Hf₅Sn₃ (CT Mn₅Si₃) при 600°C утворюється твердий розчин включення атомів Al, який простягається до складу Hf₅AlSn₃, тоді як кристалічна структура бінарного антимоніду Hf₅Sb₃ належить до іншого структурного типу (Y₅Bi₃). У всіх системах, за винятком систем з Si, для тернарних фаз реалізується CT Hf₅CuSn₃: для індивідуальних тернарних сполук Zr₅AlGe₃, Hf₅AlGe₃ i Zr₅AlSb₃, для граничних складів твердих розчинів заміщення Zr₅Al_xSn_{4-x} i Zr₅Al_xSb_{4-x} (x = 0-1) і для граничного складу вищезгаданого твердого розчину включення Hf₅Al_xSn₃ (x = 0-1).

Рис. 4.1. Ізотермічні перерізи діаграм стану систем {Zr,Hf}-Al-{Si,Ge} при 600°С.

Рис. 4.2. Ізотермічні перерізи діаграм стану систем {Zr,Hf}–Al–{Sn,Sb} при 600°С.

Загалом, можна зауважити спорідненість систем з тим самим *d*-елементом (Zr чи Hf), а також попарну спорідненість систем з Zr та Hf i одного *p*-елемента 14 чи 15 групи періодичної системи. Так, у системах з Zr на ізоконцентратах 62,5 ат.% Zr при невеликому вмісті Si, Ge, Sn чи Sb (до 7 ат.%) тернарні сполуки сталого складу зі CT Nb₅SiSn₂ (тернарна надструктура до CT W₅Si₃), що, можливо, утворюються шляхом стабілізації атомами Si, Ge, Sn чи Sb твердих розчинів заміщення на основі Zr₅Al₃, яка існує при температурах вищих за 1000°C, до нижчих температур. У системах з Hf при подібних складах також існують тернарні сполуки точкового складу, однак з відмінною структурою – СТ Mn₅Si₃, до якої належить структура бінарного алюмініду Hf₅Al₃, який, згідно з літературними відомостями, утворюється шляхом стабілізації третім компонентом і, згідно з результами нашого дослідження, при 600°С не існує.

Подібність систем Zr–Al–{Si,Ge} проявляється існуванні також В ізоструктурних тернарних сполук ZrAl_{0,33}Si_{1,67} і ZrAl_{0,23}Ge_{1,77} на ізоконцентратах 33,3 ат.% Zr. Слід зазначити, що у відповідних системах з Нf тернарні сполуки на ізоконцентратах 33,3 ат.% Нf не утворюються. Особливістю пари систем Zr-Al-Ge i Hf–Al–Ge ϵ , зокрема, існування тернарних сполук Zr₁₁Al_{3,34}Ge_{6,66} і Hf₁₁Al_{3,50}Ge_{6,50} зі структурою, похідною бінарного типу Но11Ge10. Особливістю ж систем з важкими *p*-елементами Sn i Sb ϵ iснування на iзоконцентратах 62,5 at.% Zr i Hf тернарних сполук зі структурою типу Nb₅SiSn₂, що мають змінний склад. Слід зазначити, що області гомогенності тернарних сполук з цирконієм, Zr₅Al_{1.68-} 0.40Sn1.32-2.60 (16 ат.% Al/Sn) і Zr5Al1.55-0.65Sb1.45-2.35 (11,4 ат.% Al/Sb), є більшими за області гомогенності відповідних тернарних сполук з гафнієм – Hf₅Al_{1.33-0.78}Sn_{1.67-} 2.22 (6,9 ат.% Al/Sn) і Hf₅Al_{1.52-0.74}Sb_{1.48-2.26} (9,8 ат.% Al/Sb). Як наслідок, особливістю пари потрійних систем Zr-Al-Sn і Zr-Al-Sb ϵ одночасне існуванання двох ізоструктурних тернарних сполук (CT Nb₅SiSn₂) на ізоконцентратах 62,5 ат.% Zr.

Порівнюючи системи $\{Zr, Hf\}-Al-\{Si, Ge, Sn, Sb\}$ з відомими з літератури спорідненими системами також можна виділити певні подібності. У системах Ti-Al- $\{Si, Ge, Sn, Sb\}$ утворюється порівняно невелика кількість тернарних сполук (від 1 до 3) як постійного, так і змінного складу, причому, у системах з Si і Ge сполуки утворюються в областях систем з малим вмістом Ti, тоді як у системах зi Sn i Sb – в областях, багатих на Ti. Подібно до бінарних алюмінідів цирконію та гафнію, бінарні сполуки системи Ti-Al не розчиняють третій компонент, за винятком алюмініду TiAl₃, який розчиняє до 15 ат.% Si (при 700 та 1200°C) [85] і до 15 ат.% Ge (при 400, 520 і 1000°C) [91]. У системах Ti-Al- $\{Si,Ge\}$ знайдено тернарні сполуки Ti_{0,87}Al_{0,63}Si_{1,5} і TiAl_{0,29}Ge_{1,71} зі структурами, подібними до структури ZrAl_{0,23}Ge_{1,77}, описаної у цій дисертаційній роботі. Для систем Ti-Al- $\{Sn,Sb\}$ при 900 і 1100°C, відповідно, повідомлено про існування тернарних

сполук Ti_5AlSn_2 i $Ti_5Al_{1,3}Sb_{1,7}$ зі CT Nb_5SiSn_2 , який також реалізується для тернарних сполук систем {Zr,Hf}-Al-{Sn,Sb}.

Вплив заміни перехідних *d*-металів 4 групи на *d*-метали 5 групи періодичної системи можна проаналізувати на прикладі систем {Nb,Ta}–Al–Si, для яких побудовано ізотермічні перерізи діаграм стану при 1400°C [118,120]. У системі з Nb встановлено утворення обмежених твердих розчинів заміщення на основі бінарних сполук Nb₃Al i NbSi₂, а також існування двох тернарних сполук, NbAl_{0,6}Si_{1,4} (CT TiSi₂) i Nb₅Al_{1,5}Si_{1,5} (CT W₅Si₃). У досліджених нами потрійних системах структурний тип TiSi₂ представлений бінарною сполукою ZrSn₂, а структурний тип W₅Si₃ (або його тернарний варіант – CT Nb₅SiSn₂) реалізується для восьми тернарних сполук, і ізоструктурну тернарну фазу Nb₅AlSn₂ [94] також було знайдено у системі Nb–Al–Sn.

Вплив на характер взаємодії компонентів при заміні Al на Ga можна проаналізувати на прикладі систем {Ti,Zr}–Ga–Si i Hf–Ga–{Si,Ge,Sn,Sb}, для яких побудовано ізотермічні перерізи діаграм стану.

У системі Ті–Gа–Si при 800°С існує одна тернарна сполука зі структурою типу ZrSi₂, яка є спорідненою до структури типу ZrAl_{0,23}Ge_{1,77}, що реалізується для тернарних сполук систем Zr–Al–{Si,Ge} при 600°С. Крім того, при 800 і 1350°С встановлено утворення протяжного твердого розчину заміщення на основі бінарного силіциду Ti₅Si₃ зі CT Mn₅Si₃, подібно до розчинності Al у бінарних сполуках Zr₅Si₃, Hf₅Si₃, Zr₅Ge₃ і Hf₅Ge₃ у досліджених нами системах {Zr,Hf}–Al–{Si,Ge} при 600°С. Система Zr–Ga–Si при 800°С відрізняється від системи Zr–Al–Si при 600°С як за протяжностями твердих розчинів на основі бінарних сполук, так і за стехіометрією та кристалічними структурами тернарних сполук. Структура єдиної тернарної сполуки змінного складу ZrGa_{0,90-0,66}Si_{0,10-0,34} належить до CT TII, який у досліджених нами системах реалізується лише для бінарних алюмінідів ZrAl i HfAl.

Ізотермічні перерізи діаграм стану потрійних систем Hf–Ga–{Si,Ge,Sn,Sb} побудовано в повних концентраційних інтервалах при 600°С, як і для систем Hf–Al–{Si,Ge,Sn,Sb}, що дозволяє провести їхнє повноцінне порівняння.

У системах Hf-Ga-{Si,Ge} утворюється по одній тернарній сполуці та по два HPTP між ізоструктурними бінарними сполуками зі СТ Mn₅Si₃ та СТ CuAl₂ в обох системах. Утворення HPTP $Hf_2Ga_{1-x}Si_x$ і $Hf_2Ga_{1-x}Ge_x$ (x = 0-1) робить системи Hf-Ga-{Si,Ge} подібними до систем Hf-Al-{Si,Ge}, у яких також утворюються НРТР з цією структурою між відповідними бінарними сполуками зі СТ CuAl₂. Подібність систем Hf-Ga-{Sn,Sb} до систем Hf-Al-{Sn,Sb} проявляється у багатих на Hf областях, де існують тернарні сполуки змінного складу зі структурою типу Nb₅SiSn₂. Кожна з цих систем характеризується реалізацією CT Hf₅CuSn₃ для відповідних тернарних фаз: у системах зі станумом – Hf₅AlSn₃ i Hf₅GaSn₃ – граничні склади твердих розчинів включення на основі бінарного станіду Hf₅Sn₃, а у системах зі стибієм – Hf₅AlSb₃ і Hf₅GaSb₃ – склади індивідуальних тернарних антимонідів. Відмінність систем з Al від систем з Ga полягає у стехіометрії та кристалічній структурі деяких бінарних і тернарних сполук, а також розчинності третього компонента в окремих бінарних сполуках. Так, у системах з Al на ізоконцентратах 62,5 ат.% Нf існують тернарні сполуки зі CT Mn₅Si₃, а бінарна сполука Hf₅Al₃ за умовах дослідження не існує, тоді як у системах з Ga при 600°C стабільним є бінарний галід Hf₅Ga₃ з цією структурою, а на його основі у системах Hf-Ga-{Si,Ge} утворюються HPTP, а у системах Hf-Ga-{Sn,Sb} – обмежені тверді заміщення. Кристалічні розчини структури тернарних сполук систем $Hf-Ga-{Si,Ge}$ відрізняються від структур тернарних сполук систем Hf-Al-{Si,Ge}. Відомості про типи структур тернарних сполук систем {Ti,Zr,Hf}-Al-{Si,Ge,Sn,Sb} i {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb} узагальнено у табл. 4.1 i 4.2, відповідно.

Таблиця 4.1

Структурні типи тернарних сполук у системах

$\{Ti,Zr,Hf\}\text{-}Al\text{-}\{Si,Ge,Sn,Sb\}$

(виділено сполуки, існування яких встановлено нами при 600°С)

Структурний тип (СП, ПГ)		Ti–	Al–		Zr–Al–				Hf–Al–			
	Si	Ge	Sn	Sb	Si	Ge	Sn	Sb	Si	Ge	Sn	Sb
TiAl ₃ Ge (<i>tP</i> 10, <i>P</i> 4/ <i>nmm</i>)		+										
TiAl ₃ (<i>tI</i> 8, <i>I</i> 4/ <i>mmm</i>)					+	+	+	+	+	+	+	+
$ZrSi_2$ (oS12, Cmcm)	+									+		
ScCo _{0,25} Si _{1,75} (<i>oS</i> 12, <i>Cmcm</i>)												
ZrAl _{0,23} Ge _{1,77} (<i>tI</i> 32, <i>I</i> 4 ₁ / <i>amd</i>)		+			+	+						
TiAl _{0,29} Ge _{1,71} (<i>tI</i> 24, <i>I</i> 4 ₁ / <i>amd</i>)	+	+										
Zr _{0,75} AlSi _{1,25} (<i>tI</i> 24, <i>I</i> 4 ₁ / <i>amd</i>)	+				+							
Zr_2CuSb_3 (<i>tP</i> 6, <i>P</i> -4 <i>m</i> 2)								+				+
TlI (oS8, Cmcm)					+				+			
Ho ₁₁ Ge ₁₀ (<i>tI</i> 84, <i>I</i> 4/ <i>mmm</i>)						+				+		
Hf ₅ CuSn ₃ (<i>hP</i> 18, <i>P</i> 6 ₃ / <i>mcm</i>)						+				+		+
Mn_5Si_3 (<i>hP</i> 16, <i>P</i> 6 ₃ / <i>mcm</i>)									+	+	+	+
Nb ₅ SiSn ₂ ($tI32$, $I4/mcm$)			+	+	+	+	++	++			+	+

Таблиця 4.2

Структурні типи тернарних сполук у системах {Ti,Zr,Hf}-Ga-{Si,Ge,Sn,Sb}

Структурний тип (СП, ПГ)	Ti–Ga–			Zr–Ga–				Hf–Ga–				
	Si	Ge	Sn	Sb	Si	Ge	Sn	Sb	Si	Ge	Sn	Sb
$ZrSi_2$ (oS12, Cmcm)	+	+								+		
Zr_2CuSb_3 (<i>tP</i> 6, <i>P</i> -4 <i>m</i> 2)												+
TlI (oS8, Cmcm)					+	+			+			
$FeSi (cP8, P2_13)$												+
Hf ₅ CuSn ₃ (<i>hP</i> 18, <i>P</i> 6 ₃ / <i>mcm</i>)												+
Nb ₅ SiSn ₂ ($tI32$, $I4/mcm$)				+			+	+			+	+

4.2. Кристалохімічні закономірності тернарних фаз систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb}

У потрійних системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb} при 600°С встановлено існування 29 тернарних сполук. Їхні склади охоплюють широкий концентраційний інтервал – 25-62,5 ат.% Zr чи Hf, а їхні кристалічні структури належать до семи структурних типів. Слід зазначити, що для тернарних сполук систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} характерною є реалізація бінарних структурних типів, чи їхніх тернарних впорядкованих похідних (надструктур). Найменшою кількістю тернарних сполук (2) характеризується система Hf-Al-Si, а найбільшою (по 5) системи Zr-Al-Ge i Hf-Al-Sb. При переході від систем з Si до систем з Ge спостерігається ускладнення характеру взаємодії компонентів, що проявляється у збільшенні кількості тернарних сполук від 5 (сумарно) у системах {Zr,Hf}-Al-Si до 9 у системах {Zr,Hf}-Al-Ge. При переході до систем зі Sn кількість тернарних сполук зменшується до 6, а заміна Sn на Sb приводить до збільшення кількості тернарних інтерметалідів до 9. Збільшення вмісту Zr чи Hf у сполуках (зменшення вмісту *p*-елементів) змінює координаційне оточення атомів *p*-елементів: від кубооктаедричного (25 ат.% Zr(Hf): ZrAl_{2.55}Si_{0.45}, HfAl_{2.55}Si_{0.45}, ZrAl_{2.52}Ge_{0.48}, ZrAl_{2,68}Sn_{0,32}, HfAl_{2,64}Sn_{0,36}, ZrAl_{2,65}Sb_{0,35} i HfAl_{2,67}Sb_{0,33}) до $HfAl_{2.40}Ge_{0.60}$, тригонально-призматичного і тетраедричного (33,3 ат.% Zr(Hf): ZrAl_{0,33}Si_{1,67}, ZrAl_{0.23}Ge_{1.77}, Zr₂AlSb₃ i Hf₂AlSb₃), тригонально-призматичного i тетрагональноантипризматичного (52,4 ат.% Zr(Hf): $Zr_{11}Al_{3,34}Ge_{63,66}$ i $Hf_{11}Al_{3,50}Ge_{6,50}$), тригонально-призматичного i октаедричного (55,5 ат.% Zr(Hf): Zr₅AlGe₃, Hf₅AlGe₃ Hf₅AlSb₃), ікосаедричного (62,5 ат.% Hf: i Hf₅Al_{2.54}Si_{0.46}, Hf₅Al_{2.70}Ge_{0.30}, i $Hf_5Al_{2,49}Sb_{0,51}$) i тетрагонально-антипризматичного $Hf_5Al_{2.70}Sn_{0.30}$ та ікосаедричного (62,5 ат.% Zr(Hf): Zr₅Al_{2,44}Si_{0,56}, Zr₅Al_{2,70}Ge_{0,30}, Zr₅Al_{2,71}Sn_{0,29}, $Zr_5Al_{1,68-0,40}Sn_{1,32-2,60}$, $Hf_5Al_{1,33-0,78}Sn_{1,67-2,22}$, $Zr_5Al_{2,55}Sb_{0,45}$, $Zr_5Al_{1,55-0,65}Sb_{1,45-2,35}$ i Hf₅Al_{1.52-0.74}Sb_{1.48-2.26}). Кристалічні структури тернарних сполук систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} належать виключно до тетрагональної чи гексагональної сингонії, і для більшості з них простежується тенденція до впорядкування атомів.

4.2.1. Найщільніші упаковки атомів

У кожній з досліджених систем $\{Zr, Hf\}$ -Al- $\{Si, Ge, Sn, Sb\}$ на ізоконцентратах 25 ат.% Zr чи Hf при 600°C існують тернарні сполуки зі структурою типу TiAl₃ (ZrAl_{2,55}Si_{0,45}, HfAl_{2,55}Si_{0,45}, ZrAl_{2,52}Ge_{0,48}, HfAl_{2,40}Ge_{0,60}) чи її тернарного варіанту – CT UCuAl₂ (ZrAl_{2.68}Sn_{0.32}, HfAl_{2.64}Sn_{0.36}, ZrAl_{2.65}Sb_{0.35}, HfAl_{2.67}Sb_{0.33}). Ці структурні типи, як і структура бінарних сполук ZrAl₃ і HfAl₃ (CT ZrAl₃) належать до кубічних найщільніших упаковок атомів, які є похідними структурного типу Cu (CП cF4, ПГ Fm-3m) і побудовані з щільноупакованих шарів атомів виключно у кубічній Відповідно, координаційними многогранниками ycix укладці. атомів € кубооктаедри різного складу і з певним ступенем деформації. На рис. 4.3 зображено укладку кубооктаедрів навколо атомів Al у структурі Al і навколо атомів Zr у структурах сполук ZrAl₃ i ZrAl_{2.52}Ge_{0.48}.

Al (CT Cu, *cF*4, *Fm*-3*m*)

ZrAl₃ (CT **ZrAl**₃, *t*/16, *I*4/*mmm*)

ZrAl_{2,52}Ge_{0,48} (CT TiAl₃, *tI*8, *I*4/*mmm*)

Рис. 4.3. Укладка кубооктаедрів у структурах Al, ZrAl₃ i ZrAl_{2,52}Ge_{0,48}.

Слід зазначити, що три зазначені фази – тернарні сполуки зі CT TiAl₃ (UCuAl₂), бінарні сполуки зі CT ZrAl₃ і проста речовина Al – у всіх досліджених нами потрійних системах перебувають у рівновазі при 600°С.

Для структур Al (CT Cu), бінарних алюмінідів ZrAl₃ і HfAl₃ (CT ZrAl₃) та тернарних сполук зі структурами типів TiAl₃ і UCuAl₂ у системах {Zr,Hf}-Al-{Si,Ge,Sn,Sb} розраховано компактність структури (співвідношення V_{атомів}/V_{комірки}) і рентгенівську густину (табл. 4.3). Для АІ значення компактності структури 73,7 % (ідеальне значення 74 %) відповідає значенню компактності для кубічної щільноупакованої структури, сформованої сферичними атомами одного розміру. Компактність структур бінарних і тернарних сполук є більшою, ніж компактність структури Al, що можна пояснити присутністю у структурах атомів різних розмірів. Найвищим значенням цього параметра (79,5 %) характеризується тернарний алюмоантимонід цирконію ZrAl_{2.65}Sb_{0.35}. Значення розрахованої густини $D_{\rm X}$ закономірно збільшується при переході від простої речовини Al $(D_X = 2,698 \ \Gamma \cdot \text{см}^{-3})$ до фаз з Zr $(D_X = 4,118-4,961 \ \Gamma \cdot \text{см}^{-3})$ і до фаз з Hf $(D_X = 6,332-$ 6,988 г.см-3). Нелінійність зміни густини і компактності структур при заміні *p*-елементів 14 і 15 груп періодичної системи пояснюється, в певній мірі, різною стехіометрією відповідних тернарних фаз. Враховуючи те, що бінарні алюмініди ZrAl₃ i HfAl₃, а також тернарні сполуки зі СТ TiAl₃ (UCuAl₂) перебувають у рівновазі з Al, їх можна рекомендувати для подальшого дослідження властивостей, зокрема механічних, для подальшого практичного застосування. Такі сполуки можна використовувати як легуючі домішки під час створення нових функціональних матеріалів на основі Al, зокрема конструкційних, для підвищення їхніх функціональних характеристик (міцності, твердості тощо), зокрема шляхом створення внутрішнього хімічного тиску в металічній матриці Al – так зване дисперсійне твердіння.

Співмірність міжатомних віддалей у структурах бінарних алюмінідів ZrAl₃ і HfAl₃ (CT ZrAl₃) та тернарних сполук зі структурами типів TiAl₃ і UCuAl₂, що існують у системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb}, з сумами атомних і металічних радіусів відповідних елементів вказує на металічний тип зв'язку. Відповідно, можна зробити висновок про те, що важливим чинником формування структур з кубічними найщільнішими упаковками атомів є розмірний фактор.

141

Рентгенівська густина і компактність структур Al та сполук

Речовина/сполука	Вміст Аl, ат.%	СТ	Густина <i>D</i> _X , г·см ⁻³	Компак- тність, %
Al	100	Cu	2,698	73,7
ZrAl ₃	75,0	ZrAl ₃	4,118	77,7
ZrAl _{2,55} Si _{0,45}	63,8	TiAl ₃	4,172	76,6
ZrAl _{2,52} Ge _{0,48}	63,0	TiAl ₃	4,628	76,3
$ZrAl_{2,68}Sn_{0,32}$	67,0	UCuAl ₂	4,426	75,7
$ZrAl_{2,65}Sb_{0,35}$	66,3	UCuAl ₂	4,961	79,5
HfAl ₃	75,0	ZrAl ₃	6,332	77,5
$HfAl_{2,55}Si_{0,45}$	63,8	TiAl ₃	6,372	75,7
HfAl _{2,40} Ge _{0,60}	60,0	TiAl ₃	6,988	75,9
HfAl _{2,64} Sn _{0,36}	66,0	UCuAl ₂	6,947	76,6
HfAl _{2,67} Sb _{0,33}	66,8	UCuAl ₂	6,978	76,7

на ізоконцентратах 25 ат.% Zr та Hf систем {Zr,Hf}-Al-{Si,Ge,Sn,Sb} при 600°С

4.2.2. Представники серій лінійних неоднорідних структур

У системах Zr–Al–{Si,Ge} на ізоконцентратах 33,3 ат.% Zr існують тернарні сполуки ZrAl_{0,33}Si_{1,67} і ZrAl_{0,23}Ge_{1,77}. Параметри їхньої кристалічної структури прецизійно визначено на прикладі алюмогерманіду у просторовій групі *I*4₁/*amd*. Встановлено, що структура сполуки ZrAl_{0,23}Ge_{1,77} є близькоспорідненою зі структурними типами TiAl_{0,29}Ge_{1,71} і Zr_{0,75}AlSi_{1,25}, а її особливістю є позиційне невпорядкування атомів Ge, яке було змодельовано розщепленням однієї ПСТ 8*e* (Ge1) у CT TiAl_{0,29}Ge_{1,71} на дві ПСТ 8*e* (Ge1A і Ge1B) у структурі ZrAl_{0,23}Ge_{1,77}. Атоми положень Ge1A і Ge1B розташовані в тригональних призмах Zr₆, а значення відповідних віддалей між ними ($\delta_{Ge1A-Ge1A} = 2,528(2), \delta_{Ge1A-Ge1B} = 2,703(2), \delta_{Ge1B-Ge1B} = 2,889(3)$ Å) вказують на сильну взаємодію між атомами Ge – присутність ковалентної складової зв'язку (рис. 4.4*a*,*б*). Слід зазначити, що контакти Ge-Ge є єдиними гомоатомними контактами у структурі ZrAl_{0,23}Ge_{1,77}. Ці атоми утворюють нескінченні зигзагоподібні ланцюги вздовж кристалографічних напрямів [100] і [010], а найкоротша можлива віддаль між атомами Ge ($\delta_{Ge1A-Ge1A}$) є лише дещо більшою за віддаль між атомами Ge у структурі простої речовини ($\delta_{Ge-Ge} = 2,450$ Å [13]). Атоми положення Ge2 і атоми статистичної суміші M (0,461(9)A1 + 0,539(9)Ge) формують плоскі сітки з квадратів у площині (001) з міжатомними віддалями $\delta_{Ge2-M} = 2,688(1)$ Å, співмірними з віддалями $\delta_{Ge1A-Ge1B}$ (рис. 4.4*e*).

Рис. 4.4. – Проекція структури ZrAl_{0,23}Ge_{1,77} на площину (010) з виділеними зигзагоподібними ланцюгами з атомів Ge і сіток з квадратів, утворених атомами Al i Ge (*a*), збільшена проекція зигзагоподібного ланцюга з атомів Ge на площину (010) (*б*) і проекція сітки з квадратів, утворених атомами Al i Ge на площину (001) (*в*).

Структурні типи ZrAl_{0,23}Ge_{1,77}, TiAl_{0,29}Ge_{1,71} і Zr_{0,75}AlSi_{1,25} належать до структур зрощення, а саме серії лінійних неоднорідних структур, побудованих зрощенням фрагментів структурних типів AlB₂ та CaF₂ вздовж одного напряму [135]. Фрагменти CT AlB₂ представлені шарами тригональних призм Zr₆, центрованих атомами Ge, а фрагменти CT CaF₂ – шарами пустих "пів-октаедрів", утворених атомами Ge і атомами статистичної суміші *M*. У структурі ZrAl_{0,23}Ge_{1,77} шари тригональних призм (фрагмент CT AlB₂) чергуються з двома шарами пустих

"пів-октаедрів" (фрагмент СТ CaF₂) вздовж кристалографічного напряму [001] (рис. 4.5). Кожен шар тригональних призм розвернутий на 90° навколо [001] відносно поперднього та наступного, тоді як шари "пів-октаедрів" у здвоєних шарах фрагментів СТ CaF₂ зміщені один відносно другого у площині (001), що приводить до появи площини ковзного відбиття.

Рис. 4.5. Зрощення фрагментів структуних типів AlB₂ і CaF₂ у структурі ZrAl_{0,23}Ge_{1,77} вздовж кристалографічного напряму [001].

Кристалічні структури тернарних антимонідів Zr₂AlSb₃ і Hf₂AlSb₃ належать до СТ Zr₂CuSb₃ і характеризуються впорядкованим розташуванням атомів у чотирьох ПСТ прострової групи P-4m2. Структурний тип Zr₂CuSb₃ є тернарним впорядкованим варіантом CT UAs₂. Правильна система точок 2a у структурі типу UAs₂ (ПГ P4/nmm) розділяється на дві ПСТ 1b і 1a у СТ Zr₂CuSb₃ (ПГ P-4m2), які у структурах сполук Zr₂AlSb₃ і Hf₂AlSb₃ зайняті атомами Al та Sb, відповідно. При відбувається симетрії тетрагональної від цьому пониження структури центросиметричної Перехід група-підгрупа до нецентросиметричної. для відповідних просторових груп має вигляд [133]:

P4/nmm (**a**, **b**, **c**) \xrightarrow{I} P-4m2 (**a**, **b**, **c**).

Рис. 4.6. Проекція структури сполуки Hf_2AlSb_3 вздовж [010], а також сіток з атомів Hf (**A** при z = 0,2636), Sb (**Б** при z = 0,3843) та Al i Sb (**В** при z = 0) вздовж [001].

Кристалохімічною особливістю структур сполук Zr₂AlSb₃ і Hf₂AlSb₃ є відсутність у них гомоатомних контактів у найближчому координаційному оточенні атомів. Атоми одного сорту утворюють нескінченні гомоатомні ряди -Zr-Zr- (-Hf-Hf-), -Al-Al- і -Sb-Sb- вздовж кристалографічних напрямів [100] та
[010] з міжатомними віддалями 3,9826(2) і 3,9021(2) Å, що відповідають величинам параметра *a* елементарних комірок для Zr₂AlSb₃ і Hf₂AlSb₃, відповідно. На прикладі сполуки Hf₂AlSb₃ показано (рис. 4.6), що її структуру можна також розглядати як укладку сіток з атомів одного сорту Hf (**A**) та Sb (**B**), а також сіток з атомів Al та Sb (**B**) перпендикулярно до кристалографічного напряму [001]. Дві постіловні сітки з атомів Sb (**B**) ($z \sim 0,38 \ z \sim 0,62$) оточені сітками з атомів Hf (**A**) при $z \sim 0,26$ і $z \sim 0,74$. Ці чотири сітки знаходяться між сітками з атомів Al i Sb (**B**), розташованих при z = 0 і z = 1.

Структурний тип Zr₂CuSb₃ належить до серії лінійних неоднорідних структур, побудованих зрощенням фрагментів структурних типів BaAl₄ та W [135]. Фрагменти CT BaAl₄ представлені шарами тетрагональних антипризм Al₂Sb₆, центрованих атомами Hf, а фрагменти CT W – шарами пустих "пів-октаедрів", утворених атомами Sb. У структурі Hf₂AlSb₃ (CT Zr₂CuSb₃) здвоєні шари тетрагональних антипризм (фрагмент CT BaAl₄) чергуються з шарами пустих "пів-октаедрів" (фрагмент CT W) вздовж кристалографічного напряму [001] (рис. 4.7).

Рис. 4.7. Зрощення фрагментів структурних типів BaAl₄ і W у структурі сполуки Hf₂AlSb₃ вздовж кристалографічного напряму [001].

4.2.3. Впорядкування атомів у структурах сполук Zr₁₁Al_{3,34}Ge_{6,66} і

Hf11Al3,50Ge6,50

Кристалічна структура тернарних сполук $Zr_{11}Al_{3,34}Ge_{6,66}$ і $Hf_{11}Al_{3,50}Ge_{6,50}$ є частково впорядкованою похідною структурного типу $Ho_{11}Ge_{10}$ (СП t/84, ПГ I4/mmn, a = 10,79, c = 16,23 Å) [146]. На сьогодні відомо кілька впорядкованих надструктур до типу $Ho_{11}Ge_{10}$, що характеризуються аналогічною просторовою групою і співмірними елементарними комірками (табл. 4.4): Sc₁₁Al₂Ge₈ (a = 10,419, c = 14,974 Å) [152], Sm₁₁Ga_{2,3}Sn_{7,7} (a = 11,5876, c = 17,3089 Å) [153], Sm₁₁In₆Ge₄ (a = 11,540, c = 16,325 Å) [154] і Sc₇Cr_{4,8}Si_{9,2} (a = 9,757, c = 13,884 Å) [155].

Таблиця 4.4

Розподіл атомів у правильних системах точок просторової групи I4/mmm у структурах типів Ho₁₁Ge₁₀, Sc₁₁Al₂Ge₈, Sm₁₁Ga_{2,3}Sn_{7,7}, Sm₁₁In₆Ge₄,

ПСТ	Структурний тип					
	Ho ₁₁ Ge ₁₀	$Sc_{11}Al_2Ge_8$	Sm11Ga2,3Sn7,7	Sm11In6Ge4	Sc7Cr4,8Si9,2	Zr ₁₁ Al _{3,34} Ge _{6,66}
$ \begin{array}{c} 16n \\ (0 \ y \ z) \end{array} $	Ho y = 0,2518 z = 0,3103	Sc y = 0,2507 z = 0,3102	Sm y = 0,2512 z = 0,3109	Sm y = 0,2516 z = 0,3110	Sc y = 0,2536 z = 0,3117	Zr y = 0,2512 z = 0,3131
$ \begin{array}{c} 16n \\ (0 \ y \ z) \end{array} $	Ho y = 0,3241 z = 0,1025	Sc y = 0,3356 z = 0,1024	Sm y = 0,3244 z = 0,0993	Sm y = 0,3418 z = 0,1003	Cr y = 0,3231 z = 0,1005	Zr y = 0,3374 z = 0,1008
$ \begin{array}{c} 16m \\ (x x z) \end{array} $	Ge x = 0,2097 z = 0,1814	Ge x = 0,2047 z = 0,1711	Sn x = 0,2076 z = 0,1795	In x = 0,2071 z = 0,1708	Si x = 0,2062 z = 0,1672	Al/Ge x = 0,2098 z = 0,1786
$ \begin{array}{c} 8j \\ (x \frac{1}{2} 0) \end{array} $	Ge $x = 0,1370$	Ge $x = 0,1470$	Ga/Sn $x = 0,1380$	Ge $x = 0,1519$	\mathbf{Si} x = 0,1214	Al/Ge $x = 0,144$
$ \begin{array}{c} 8h\\ (xx0) \end{array} $	Ge $x = 0,1197$	$\mathbf{Al} \\ x = 0,1270$	Ga/Sn $x = 0,1202$	In $x = 0,1272$	Si/Cr $x = 0,1221$	$\mathbf{Al} \\ x = 0,147$
$ \begin{array}{c} 8h\\ (xx0) \end{array} $	Ho $x = 0,3214$	$\mathbf{Sc} \\ x = 0,3272$	\mathbf{Sm} x = 0,3174	Sm $x = 0,3305$	Sc $x = 0,3212$	\mathbf{Zr} x = 0,3181
$ \begin{array}{c} 4e \\ (0 \ 0 \ z) \end{array} $	Ho z = 0,1606	\mathbf{Sc} z = 0,1688	\mathbf{Sm} z = 0,1598	Sm $z = 0,1643$	Sc $z = 0,1625$	\mathbf{Zr} z = 0,1701
$ \begin{array}{c} \overline{4e} \\ (0 \ 0 \ z) \end{array} $	Ge z = 0,3871	Ge z = 0,3815	Ga z = 0,3940	$\overline{\mathbf{Ge}}$ $z = 0,3797$	Siz = 0,3920	Al/Ge z = 0,3873
$ \begin{array}{c c} 4d \\ (0 \frac{1}{2} \frac{1}{4}) \end{array} $	Ge	Ge	Ga	Ge	Si	Ge

Sc₇Cr_{4,8}Si_{9,2} i Zr₁₁Al_{3,34}Ge_{6,66}

Розташування атомів у структурі сполуки $Zr_{11}Al_{3,34}Ge_{6,66}$ є оригінальним. Найбільш подібним до структури $Zr_{11}Al_{3,34}Ge_{6,66}$ є СТ $Sc_{11}Al_2Ge_8$, однак для нього положення 16*m*, 8*j* і 4*e* зайняті виключно атомами Ge, тоді як у структурі $Zr_{11}Al_{3,34}Ge_{6,66}$ у цих положеннях спостерігається часткове заміщення атомів Ge на атоми Al. Не виключена можливість реалізації нових впорядкованих похідних до бінарного структурного типу Ho₁₁Ge₁₀.

Кристалохімічною особливістю структурних типів Sc₁₁Al₂Ge₈, Sm₁₁Ga_{2,3}Sn_{7,7}, Sm₁₁In₆Ge₄ є те, що атоми *p*-елементів 13 групи (Al, Ga, In) займають положення у ПСТ 8*h*, яке формує ізольовані квадрати навколо початку системи координат тетрагональної об'ємноцентрованої елементарної комірки: $\delta_{Al-Al} = 2,647$ Å у Sc₁₁Al₂Ge₈, $\delta_{M2-M2} = 2,786$ Å у Sm₁₁Ga_{2,3}Sn_{7,7}, $\delta_{In-In} = 2,936$ Å у Sm₁₁In₆Ge₄, а атоми, що займають положення у ПСТ 16*m* утворюють пари: $\delta_{Ge-Ge} =$ 2,714 Å у Sc₁₁Al₂Ge₈, $\delta_{Sn1-Sn1} = 2,920$ Å у Sm₁₁Ga_{2,3}Sn_{7,7}, $\delta_{In-In} = 2,941$ Å у Sm₁₁In₆Ge₄. У структурі тернарної сполуки Zr₁₁Al_{3,34}Ge_{6,66} ПСТ 8*h* зайняте атомами Al, які формують ізольовані квадрати ($\delta_{Al-Al} = 3,05(4)$ Å), ПСТ 16*m* зайняте статистичною сумішшю атомів Al і Ge (*M*1 = 0,19(2)Al + 0,81(2)Ge), які утворюють пари ($\delta_{M2-M2} =$ 2,43(4) Å).

Рис. 4.8. Шари з тригональних призм навколо атомів положення M2 (8*j*) у структурі сполуки Zr₁₁Al_{3,34}Ge_{6,66} (*a*) та один шар призм при z = 1/2 (*б*).

Рис. 4.9. Ізольовані групи поліедрів з чотирьох тетрагональних антипризм навколо атомів Al (*a*), ізольовані пари тетрагональних антипризм навколо положення *M*3 (*б*) та ізольовані тетрагональні антипризми навколо атомів Ge (*в*), каркас з попарно з'єднаних тетрагональних антипризм навколо положення *M*1 (*г*) у структурі сполуки Zr₁₁Al_{3,34}Ge_{6,66}.

У структурі сполуки $Zr_{11}Al_{3,34}Ge_{6,66}$ атоми *p*-елементів характеризуються тригонально-призматичною та тетрагонально-антипризматичною координацією атомів. Тригональні призми з атомів Zr навколо положення *M*2 зрощені попарно через прямокутні грані (осі призм паралельні), і ці пари призм, з'єднуючись через вершини, утворюють шари при z = 0 і 1/2 (рис. 4.8). Чотири тетрагональні антипризми складу Zr_6Al_2 навколо атомів Al (ПСТ 8*h*) утворюють ізольовані

групи (рис. 4.9*a*). Розташування тетрагональних антипризм з атомів Zr навколо атомів Ge і статистичних сумішей атомів Al і Ge зображено на рис. 4.9*6-г*. Антипризми навколо положення *M*3 (ПСТ 4*e*) зрощені попарно квадратними гранями, утворюючи ізольовані сильно деформовані кубооктаедри (рис. 4.9*б*). Навколо атомів Ge (ПСТ 4*d*) формуються деформовані ізольовані тетрагональні антипризми (рис. 4.9*в*). Навколо положення статистичної суміші атомів *M*1 (ПСТ 16*m*) антипризми зрощені попарно через квадратні грані. Зрощені антипризми з'єднуюються вершинами, утворюючи каркас (рис. 4.9*г*).

4.2.4. Тернарні фази Новотного

Фази Новотного – представники структурного типу Mn₅Si₃ (СП *hP*16, ПГ *P*6₃/*mcm*) і його похідних – реалізуються в усіх потрійних системах {Zr,Hf}–Al– {Si,Ge,Sn,Sb} при 600°С. Кристалічні структури бінарних сполук T_5M_3 (T = Zr, Hf; M = Si, Ge, Sn, Sb), за винятком антимоніду Hf₅Sb₃ належать до СТ Mn₅Si₃. До цього ж типу належать структури чотирьох тернарних сполук, що існують у системах Hf–Al–{Si,Ge,Sn,Sb} на ізоконцентратах 62,5 ат.% Hf при невеликому вмісті Si, Ge, Sn i Sb. Крім цього, у досліджених потрійних системах реалізуються структурні типи Ti₅Ga₄ i Hf₅CuSn₃ (СП *hP*18, ПГ *P*6₃/*mcm*), які є похідними СТ Mn₅Si₃. Тип Ti₅Ga₄ характерний для бінарних сполук Zr₅Sn₄ i Zr₅Sb₄, а СТ Hf₅CuSn₃ – для тернарних сполук Zr₅AlGe₃, Hf₅AlGe₃ i Hf₅AlSb₃. Більше того, встановлено утворення твердих розчинів заміщення на основі Zr₅Sn₄ i Zr₅Sb₄ (CT Ti₅Ga₄), а також твердого розчину включення на основі Hf₅Sn₃ (СТ Mn₅Si₃) протяжністю до 11,1 ат.% Al. Кристалічні структури граничних складів цих твердих розчинів, Zr₅AlSn₃, Zr₅AlSb₃ i Hf₅AlSn₃, також належать до СТ Hf₅CuSn₃.

Структурний тип Ti₅Ga₄ є бінарною похідною включення до CT Mn₅Si₃. Він формується шляхом включення додаткових однойменних атомів *p*-елемента в октаедричні пустоти CT Mn₅Si₃ (ПСТ 2*b* просторової групи *P*6₃/*mcm*). Структурний тип Hf₅CuSn₃ є тернарним впорядкованим варіантом CT Ti₅Ga₄, і, відповідно, тернарною надструктурою включення до CT Mn₅Si₃. Тернарні фази зі CT Hf₅CuSn₃ у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°C формуються у три способи: як індивідуальні тернарні сполуки постійного складу у системах $\{Zr,Hf\}$ –Al–Ge і Hf–Al–Sb, заміщенням атомів Sn і Sb у ПСТ 2*b* на атоми Al в межах твердих розчинів заміщення на основі бінарних сполук Zr₅Sn₄ і Zr₅Sb₄ у системах Zr–Al–{Sn,Sb}, і включенням атомів Al в октаедричні пустоти (ПСТ 2*b*) структури бінарного антимоніду Hf₅Sn₃ зі структурою типу Mn₅Si₃ в межах відповідного твердого розчину включення у системі Hf–Al–Sn.

Кристалохімічно, структурні типи Mn₅Si₃ і Hf₅CuSn₃ є близькоспорідненими і відрізняються лише додатковою ПСТ 2b у початку системи координат гексагональної елементарної комірки (ПГ Р63/тст). Атоми характризуються подібним координаційним оточенням, однак деякі поліедри зазнають змін при переході від СТ Mn₅Si₃ до СТ Hf₅CuSn₃. Так, у структурі тернарної сполуки $Hf_5Al_{2,49}Sb_{0,51}$ (CT Mn₅Si₃) координаційним многогранником для атомів в положенні Hfl ϵ 15-вершинник Hfl M_5 Hf₁₀ (деформована пентагональна призма складу Hf₁₀ з п'ятьма додатковими атомами статистичної суміші М навпроти двох базових і трьох бокових граней), тоді як у структурі сполуки Zr₅AlGe₃ поліедром навколо тотожного атома Zr1 є 11-вершинник Zr1Al₂Ge₅Zr₄, який можна описати як деформовану пентагональну дипіраміду складу Ge₅Al₂ з чотирма додатковими атомами Zr, або як тригональну призму складу Zr₄Al₂ з усіма гранями, центрованими атомами Ge (рис. 4.10а,б). Також змінюється координаційний многогранник атомів *p*-елементів у ПСТ 6*g*: від дефектного ікосаедра складу M_2 Hf₉ для атомів статистичної суміші M у структурі сполуки $Hf_5Al_{2,49}Sb_{0,51}$ до 13-вершинника Франка-Каспера, або тришапкової тригональної призми Zr₉ з сотирма додатковими атомами GeAl₂Ge₂Zr₉ для атомів Ge у структурі сполуки Zr₅AlGe₃ (рис. 4.10*в*,*г*). Координаційні числа та многогранники для атомів Hf2 і Zr2 в обох структурах є однаковими.

Структуру сполуки Zr₅AlGe₃ можна також описати як укладку двох типів моноатомних сіток: **A** при z = 0 і z = 1/2 і **Б** (**Б**[°]) при z = 1/4 і z = 3/4, які чергуються вздовж кристалографічного напряму [001] з послідовністю **AБAБ**[°] (рис. 4.11). Слід зазначити, що сітки **Б** та **Б**[°] складу Zr₃Ge₃ є ідентичними, однак сітка **Б**[°] повернута на 60° (гвинтова вісь 6₃) у площині (001) відносно сітки **Б**. Атоми Zr у сітці **A** (складу Zr₂Al) утворюють правильні шестикутники, центри яких зайняті атомами Al (символ сітки: 3⁶). Сітка Б побудована з деформованих шестикутників з атомів Zr і Ge (символ сітки: 6³). Атоми сіток Б та Б` утворюють октаедри навколо атомів сітки А: деформовані октаедри ZrGe₆, з'єднуючись ребрами, утворюють канали [001]. розміщені октаедри AlZr₆ 4.12). вздовж в яких (рис. Вздовж кристалографічного напряму [001] октаедри ZrGe₆, як і октаедри AlZr₆, з'єднані між собою спільними гранями та утворюють тривимірний каркас та одновимірні колони, відповідно. Слід зазначити, що у структурі сполуки Zr₅AlGe₃ атоми d-елемента (Zr) центрують октаедри, утворені атомами p-елемента 14 групи (Ge), а атоми *p*-елемента 13 групи (Al) центрують октаедри, утворені атомами *d*-елемента (Zr).

Рис. 4.10. Координаційний многогранники атомів Hf1 і M у структурі сполуки Hf₅Al_{2,49}Sb_{0,51} (*a*,*в*) та Zr1 і Ge у структурі сполуки Zr₅AlGe₃ (*б*,*г*).

Кристалічну структуру сполуки $Hf_5Al_{2,49}Sb_{0,51}$ (СТ Mn_5Si_3), як і ізоструктурних до неї сполук, також можна описати укладкою моноатомних сіток, подібних до сіток атомів у структурі сполуки Zr_5AlGe_3 (СТ Hf_5CuSn_3). Відмінність

полягає у складі сіток **A** (у структурі Hf₅Al_{2,49}Sb_{0,51} сітки **A** побудовані з незаповнених гексагонів), і, відповідно, октаедри з атомів *d*-елементів навколо вузлів елементарної комірки є незаповненими.

Рис. 4.11. Проекція структури сполуки Zr₅AlGe₃ вздовж кристалографічного напряму [100] (*a*) і моноатомних шарів **A** (б) та **Б** (в) вздовж кристалографічного напряму [001].

Рис. 4.12. Проекція структури сполуки Zr₅AlGe₃ вздовж кристалографічного напряму [001] (*a*) і колона октаедрів <u>Al</u>Zr₆ вздовж [001] (*б*).

4.3.5. Тетрагонально-антипризматична координація атомів Al/M у структурах тернарних сполук *T*₅(Al,*M*)₃

У потрійних системах Zr–Al–{Si,Ge,Sn,Sb} при 600°С на ізоконцентратах 62,5 ат.% Zr при невеликому вмісті Si, Ge, Sn i Sb існують тернарні сполуки постійного складу з загальною стехіометрією Zr₅(Al_{1-x} M_x)₃ (M - p-елементи 14 i 15 групи). Їхня кристалічна структура належить до CT Nb₅SiSn₂ (CП *t1*32, ПГ *I4/mcm*) – тернарного впорядкованого варіанту CT W₅Si (CП *t1*32, ПГ *I4/mcm*). Встановлено, що у структурах сполук Zr₅Al_{2,70}Ge_{0,30}, Zr₅Al_{2,71}Sn_{0,29} i Zr₅Al_{2,55}Sb_{0,45} атоми *p*-елементів частково впорядковано займають дві ПСТ (8*h* i 4*a*): атоми Al – повністю займають ПСТ 4*a*, а статистичні суміші атомів M – ПСТ 8*h*. Якщо припустити, що згадані тернарні фази, які при 600°С є індивідуальними тернарними сполуками, є частинами твердих розчинів заміщення на основі високотемпературного бінарного алюмініду зі СТ W₅Si₃ (існує в інтервалі 1000-1395°С), стабілізованими при 600°С, тоді можна зробити висновок, що атоми *p*-елементів 14 і 15 груп періодичної системи елементів (Ge, Sn i Sb) заміщуують атоми Al лише в положенні 8*h*. Це приводить до часткового впорядкування атомів i, відповідно, реалізації тернарної надструктури. Крім цього, у потрійних системах $\{Zr,Hf\}-Al-\{Sn,Sb\}$ встановлено існування ще чотирьох тернарних сполук при відносно великому вмісті Sn чи Sb. Їхні кристалічні структури також належать до CT Nb₅SiSn₂. Цікавим є співіснування у системах $Zr-Al-\{Sn,Sb\}$ двох тернарних сполук з однаковими кристалічними структурами, які при 600°C перебувають у рівновазі. На прикладі сполуки змінного складу $Zr_5Al_{1,68-0,40}Sn_{1,32-2,60}$ показано, що часткове впорядкування атомів Al i Sn відбувається в такий спосіб: при складі $Zr_5Al_{0,40}Sn_{2,60}$ ПСТ 8*h* зайнята виключно атомами Sn, тоді як ПСТ 4*a* – статистичною сумішшю атомів Al i Sn, а при складі $Zr_5Al_{1,68}Sn_{1,32}$ – обидва положення зайняті статистичними сумішами в різних співвідношеннях: 8*h* – 43 % Al / 57 % Sn, 4*a* – 83 % Al / 17 % Sn. Крім того, можна вважати, що тип структури змінюється в межах області гомогенності сполуки від CT W₅Si₃ при складі Zr₅Al_{1,68}Sn_{1,32} до CT Nb₅SiSn₂ при складі Zr₅Al_{0,40}Sn_{2,60}.

Кристалохімічний аналіз цих структур здійснено на прикладі структури тернарного алюмогерманіду $Zr_5Al_{2,70}Ge_{0,30}$ [149]. Її можна описати як укладку двох типів моноатомних шарів: **A** і **A**` при z = 0 і z = 1/2, **Б** при z = 1/4 і z = 3/4, які чергуються вздовж кристалографічного напряму [001] з послідовністю **AБA`Б** (рис. 4.13). Шари **A** та **A**` є ідентичними, однак шар **A**` зміщена у площині (001) відносно сітки **A** (площина ковзного відбиття *n*). Атоми Zr та статистичної суміші атомів Zr і Al у шарі **A** утворюють плоску сітку з трикутників, квадратів і гексагонів (символ сітки: 3^2 .4.3.6 для вузла Zr, 3^3 .6 для вузла *M*). Шар **Б** утворений атомами Zr і Al, що чергуються вздовж кристалографічних напрямів [100] і [010], формуючи плоску сітку з квадратів (символ сітки: 4^4 вузлів Zr і Al). Атоми шарів **A** та **A**` утворюють тетрагональні антипризми Zr₈, у центрах яких знаходяться атоми Al з шару **Б** і гексагональні антипризми M_4Zr_8 , у центрах яких знаходяться атоми Zr з шару **Б**.

Рис. 4.13. Проекції структури сполуки Zr₅Al_{2,70}Ge_{0,30} вздовж кристалографічного напряму [010] (*a*) і моноатомних шарів **A** (б) та **Б** (в) вздовж кристалографічного напряму [001].

Віднімаючи від гексагональних антипризм <u>Zr</u> M_4 Zr₈ атоми Zr можна виділити тетраедри з атомів статистичної суміші M, у центрах яких знаходяться атоми Zr. Таким чином структура сполуки Zr₅Al_{2,70}Ge_{0,30} побудована з двох типів ізольованих колон, що простягаються нескінченно вздовж кристалографічного напряму [001] (рис. 4.14). Колони побудовано з центрованих тетрагональних антипризм <u>Al</u>Zr₈ (атоми Zr з ПСТ 16*k*) та тетраедрів <u>Zr</u> M_4 (атоми Zr з ПСТ 4*b*). Тетрагональні антипризми з'єднані між собою квадратними гранями, тоді як тетраедри – ребрами.

Рис. 4.14. Укладка тетрагональних антипризм <u>Al</u>Zr₈ і тетраедрів <u>Zr</u>M₄ у структурі сполуки Zr₅Al_{2,70}Ge_{0,30} вздовж кристалографічного напряму [001].

Таким чином, структури тернарних сполук систем {Zr,Hf}–Al–{Si,Ge,Sn,Sb} належать виключно до гексагональної та тетрагональної сингоній. Атоми *p*-елементів характеризуються шістьма типами координаційних многогранників:

- кубооктаедрами,
- тетраедрами,
- тригональними призмами,
- тригональними антипризмами (октаедрами),
- тетрагональними антипризмами,
- ікосаедрами.

Кубооктаедри формуються в структурах сполук із вмістом 25 ат.% Zr(Hf), тетраедри (gyrobifastigium) – 33,3 ат.% Zr(Hf), тригональні призми – 33,3 і 52,4 ат.% Zr(Hf), октаедри – 55,5 ат.% Zr(Hf), тетрагональні антипризми – 52,4 і 62,5 ат.% Zr(Hf). ікосаедри – 62,5 ат.% Zr(Hf), Залежно від співвідношення компонентів у системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} можна цілеспрямовано змінювати координаційне оточення атомів і вимірність будови структури від 3D (кубічні найщільніші упаковки) до 1D (структури з ізольованими колонами многогранників). Керування анізотропією кристалічної структури має визначальний вплив на оптимізацію фізичних властивостей.

ВИСНОВКИ

Методами рентгенівської дифракції (порошку та монокристалу), скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії вперше визначено фазові рівноваги та параметри кристалічних структур сполук у потрійних системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} при 600°С.

1. Побудовано ізотермічні перерізи діаграм стану систем {Zr,Hf}–Al– {Si,Ge,Sn,Sb} при 600°С у повних концентраційних інтервалах. Встановлено існування 29 тернарних сполук, 22 з яких – відкриті вперше. Кристалічні структури синтезованих сполук належать до семи структурних типів, два з яких є новими: ZrAl_{0,23}Ge_{1,77} (символ Пірсона *tI*32, просторова група *I*4₁/*amd*, a = 3,8013(2), c =29,893(3) Å) і Zr₁₁Al_{3,34}Ge_{6,66} (*tI*84, *I*4/*mmm*, a = 10,3679(9), c = 14,8529(18) Å). Системи {Zr,Hf}–Al–{Si,Ge,Sn,Sb} подібні попарно. У системах з Ge утворюється більша кількість тернарних сполук (9) у порівнянні з системами з Si (5), а у системах зі Sb – більше тернарних сполук (9), порівняно з системами зi Sn (6).

2. У системах {Zr,Hf}–Al–{Si,Ge} бінарні силіциди і германіди розчиняють Al з утворенням твердих розчинів заміщення; розчинність Al (ат.%) становить у: Zr₂Si – 9, Zr₅Si₃ – 15, Zr₃Si₂ – 7,5, Zr₅Si₄ – 6, ZrSi – 9,5, ZrSi₂ – 12, ZrGe₂ – 4, Zr₅Ge₃ – 10, Hf₅Si₃ – 13,5, Hf₃Si₂ – 7, Hf₅Si₄ – 5,5, HfSi – 2,5, HfSi₂ – 8, HfGe₂ – 9, Hf₃Ge₂ – 2,5, Hf₅Ge₃ – 5. Більшість бінарних алюмінідів Zr i Hf не розчиняють третій компонент. У системах Hf–Al–{Si,Ge} існують неперервні ряди твердих розчинів Hf₂Al–Hf₂Si i Hf₂Al–Hf₂Ge (структурний тип CuAl₂, *tl*12, *l*4/*mcm*). Спільним для систем {Zr,Hf}– Al–{Si,Ge} є існування тернарних сполук на ізоконцентратах 25 ат.% Zr(Hf) зі структурою типу TiAl₃ (*tl*8, *l*4/*mmm*). У системах Zr–Al–{Si,Ge} також існують дві пари ізоструктурних тернарних сполук: ZrAl_{0,33}Si_{1,67} i ZrAl_{0,23}Ge_{1,77} (тип ZrAl_{0,23}Ge_{1,77}) та Zr₅Al_{2,44}Si_{0,56} i Zr₅Al_{2,70}Ge_{0,30} (Mb₅SiSn₂, *tl*32, *l*4/*mcm*). У системах {*T*,Hf}–Al–{Si,Ge} – Hf₅Al_{2,54}Si_{0,46} i Hf₅Al_{2,70}Ge_{0,30} (Mn₅Si₃, *h*P16, *P*6₃/*mcm*). У системах {*Z*r,Hf}–Al–Ge утворюються ще дві пари ізоструктурних сполук: Zr₁Al_{3,34}Ge_{6,66} i Hf₁₁Al_{3,50}Ge_{6,50} (тип Zr₁₁Al_{3,34}Ge_{6,66}) та Zr₅AlGe₃ i Hf₅AlGe₃ (Hf₅CuSn₃, *h*P18, *P*6₃/*mcm*). Тернарні сполуки систем {Zr,Hf}–Al–{Si,Ge} характеризуються точковими складами.

3. У системах {Zr,Hf}-Al-{Sn,Sb} обмежені тверді розчини заміщенння утворюються на основі бінарних сполук Zr₅Sn₄ (11,1 ат.% Al), Zr₅Sn₃ (2,5 ат.% Al), Zr₅Sb₄ (11,1 at.% Al), Zr₅Sb₃ (2,5 at.% Al) i Hf₅Sb₃ (3 at.% Al). Ha ochobi Hf₅Sn₃ утворюється твердий розчин включення протяжністю до 11,1 ат.% Al. Інші бінарні сполуки не розчиняють третій компонент. Спільним для систем {Zr,Hf}-Al-{Sn,Sb} є існування тернарних сполук постійного складу на ізоконцентратах 25 ат.% Zr(Hf) зі структурою типу UCuAl₂ (tI8, I4/mmm) і сполук змінного складу на ізоконцентратах 62,5 ат.% Zr(Hf) зі структурою типу Nb₅SiSn₂. Крім того, у системах $Zr-Al-{Sn,Sb}$ існують ізоструктурні сполуки $Zr_5Al_{2.71}Sn_{0.29}$ i $Zr_5Al_{2.55}Sb_{0.45}$ (Nb₅SiSn₂), a y системах Hf–Al–{Sn,Sb} – Hf₅Al_{2.70}Sn_{0.30} i Hf₅Al_{2.49}Sb_{0.51} (Mn₅Si₃). У системах {Zr,Hf}-Al-Sb утворюються ізоструктурні тернарні сполуки Zr_2AlSb_3 i Hf₂AlSb₃ (тип Zr₂CuSb₃, *tP*6, *P*-4*m*2). У всіх системах {Zr,Hf}-Al-{Sn,Sb} реалізується структурний тип Hf₅CuSn₃: для тернарної сполуки Hf₅AlSb₃, для граничних складів твердих розчинів заміщення на основі Zr₅Sn₄ і Zr₅Sb₄ і для граничного складу твердого розчину включення на основі Hf₅Sn₃.

4. Структурні типи, що реалізуються у системах {Zr,Hf}–Al–{Si,Ge,Sn,Sb} на ізоконцентратах 25 ат.% Zr(Hf) належать до кубічних найщільніших упаковок атомів. Розрахована компактність структур для бінарних і тернарних сполук є більшою, ніж компактність структури Al; найбільше значення компактності (79,5 %) має ZrAl_{2,65}Sb_{0,35}.

5. Новий структурний тип $ZrAl_{0,23}Ge_{1,77}$ характеризується частковим впорядкуванням атомів Al і Ge, а також позиційним невпорядкуванням атомів Ge. Він належить серії лінійних неоднорідних структур, побудованих зрощенням фрагментів структурних типів AlB₂ та CaF₂. Новий тип $Zr_{11}Al_{3,34}Ge_{6,66}$ є тетрарним варіантом структурного типу Ho₁₁Ge₁₀, і також характеризується частковим впорядкуванням атомів Al і Ge. Структура побудована укладкою тригональних призм і тетрагональних антипризм, центрованих атомами *p*-елементів. 6. Збільшення вмісту Zr чи Hf у сполуках (зменшення вмісту *p*-елементів) змінює координаційне оточення атомів *p*-елементів: від кубооктаедричного (25 ат.% Zr(Hf)) до тетраедричного і тригонально-призматичного (33,3 ат.% Zr(Hf)), тригонально-призматичного і тетрагонально-антипризматичного (52,4 ат.% Zr(Hf)), тригонально-призматичного і октаедричного (55,5 ат.% Zr(Hf)) і тетрагонально-антипризматичного та ікосаедричного (62,5 ат.% Zr(Hf)). Залежно від співвідношення компонентів можна цілеспрямовано змінювати координаційне оточення атомів і вимірність будови структури від тривимірної (кубічні найщільніші упаковки) до одновимірної (структури з ізольованими колонами многогранників).

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- ASM Alloy Phase Diagram Database (Release 2006/2022); Villars, P.; Okamoto, H.; Savysyuk, I.; Cenzual. K., Eds. ASM International: Materials Park (Ohio), 2022.
- Pauling File. Binaries Edition; Villars, P.; Cenzual, K.; Daams, J. L. C.; Hulliger, F.; Massalski, T. B.; Okamoto, H.; Osaki, K.; Prince, A., Eds. ASM International: Materials Park (Ohio), 2002.
- Binary Alloy Phase Diagrams, 2nd edition. CD version 1.0; Massalski, T. B., Ed. ASM International: Materials Park (Ohio), 1996.
- Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD), Release 2022/23; Villars, P.; Cenzual. K., Eds. ASM International: Materials Park (Ohio), 2023.
- Villars, P.; Cenzual, K.; Gladyshevskii, R. *Handbook of Inorganic Substances 2017*, Walter de Gruyter: Berlin, 2017, 1955 p.
- 6. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991; 251 p.
- Гладишевський, Р. Є.; Пукас, С. Я. Прикладна Кристалохімія. Практикум. Видання четверте, доповнене; Видавничий центр Львівського національного університету імені Івана Франка: Львів, 2022; 126 с.
- 8. Hull, A. W. Crystal structure of titanium, zirconium, cerium, thorium and osmium. *Phys. Rev.* 1921, *18*, 88–89.
- 9. Rogers, B. A.; Atkins, D. F. Zirconium-columbium diagram. *Trans. Am. Inst. Min., Metall. Pet. Eng.* 1955, 203, 1034–1041.
- Noethling, W.; Tolksdorf, S. Die kristallstruktur des hafniums. Z. Kristallogr. 1925, 62, 255–259.
- 11. Duwez, P. E. The allotropic transformation of hafnium. J. Appl. Phys. 1951, 22, 1174–1175.

- Weitzer, F.; Remschnig, K.; Schuster, J. C.; Rogl, P. Phase equilibria and structural chemistry in the ternary systems *M*–Si–N and *M*–B–N (*M* = Al, Cu, Zn, Ag, Cd, In, Sn, Sb, Au,Tl, Pb, Bi). *J. Mater. Res.* 1990, *5*, 2152–2159.
- 13. Stadelmaier, H. H.; Hofer, G. Phasen mit diamant-unterstruktur in ternaren beryllium-legierungen. *Monatsh. Chem.* 1967, *98*, 45–48.
- Swanson, H. E.; Fuyat, R. K. Standard X-ray diffraction powder patterns: alpha-tin, α-Sn (cubic). *Natl. Bur. Stand. Circ. (U.S.)* 1953, *539*, *2*, 12–13.
- 15. Mark, H.; Polanyl, M. Die gitterstruktur, gleitrichtungen und gleitebenen des weissen zinns. Z. Phys. 1923, 18, 75–96.
- Barrett, C. S.; Cucka, P.; Haefner, K. The crystal structure of antimony at 4.2, 78 and 298 K. *Acta Crystallogr*. 1963, *16*, 451–453.
- Edshammar, L. E.; Andersson, S. Studies on the zirconium-aluminium and hafniumaluminium systems. *Acta Chem. Scand.* 1960, *14*, 223–224.
- Potzschke, M.; Schubert, K.; Zum aufbau einiger zu T⁴–B³ homologer und quasihomologer systeme. II. Crystal structure of titanium titan–aluminium, zirkonium–aluminium, hafnium–aluminium, molybdan–aluminium und einige ternare systeme. Z. Metallkd. 1962, 53, 548–560.
- Nowotny, H.; Schob, O.; Benesovsky, F. Die kristallstruktur von Zr₂Al und Hf₂Al. *Monatsh. Chem.* 1961, *92*, 1300–1303.
- Schubert, K.; Anantharaman, T. R.; Ata, H. O. K.; Meissner, H. G.; Potzschke, M.; Rossteutscher, W.; Stolz, E. Einige strukturelle ergebnisse an metallischen phasen (6). *Naturwissenschaften* 1960, *47*, 512.
- 21. Wilson, C. G.; Sams, D.; Renouf, T. J. The crystal structure of Zr₅Al₃. *Acta Crystallogr.* 1959, *12*, 947–948.
- 22. Boller, H.; Nowotny, H.; Wittmann, A. Die kristallstruktur einiger hafnium-haltiger Phasen. *Monatsh. Chem.* 1960, *91*, 1174–1184.
- 23. Meng, W. J.; Faber, J. Jr.; Okamoto, P. R.; Rehn, L. E.; Kestel, B. J.; Hitterman, R. L. Neutron diffraction and transmission electron microscopy study of

hydrogen-induced phase transformations in Zr₃Al. J. Appl. Phys. 1990, 67, 1312–1319.

- Wilson, C. G.; Spooner, F. J. The crystal structure of Zr₃Al₂. *Acta Crystallogr*. 1960, 13, 358–359.
- 25. Cenzual, K.; Gelato, L. M.; Penzo, M.; Parthe, E. Inorganic Structure Types with Revised Space Groups. I. *Acta Crystallogr. B* 1991, *47*, 433–439.
- 26. Nandedkar, R. V.; Delavignette, P. On the formation of a new superstructure in the zirconium–aluminium system. *Phys. Status Solidi A* 1982, *73*, K157–K160.
- 27. Wilson, C. G. The crystal structure of ZrAl₂. Acta Crystallogr. 1959, 12, 660–662.
- Brauer G. Uber die kristallstruktur von TiAl₃, NbAl₃, TaAl₃ und ZrAl₃. Z. Anorg. Allg. Chem. 1939, 242, 1–22.
- 29. Edshammar, L. E. The crystal structures of Hf₃Al₂ and of Hf₅Al₃O_x. *Acta Chem. Scand.* 1960, *14*, 1220.
- Edshammar, L. E. The crystal structure of HfAl. Acta Chem. Scand. 1961, 15, 403–406.
- Edshammar, L. E. The crystal structure of Hf₂Al₃. Acta Chem. Scand. 1960, 14, 2244.
- 32. Schachner, H.; Nowotny, H.; Machenschalk, R. Zum aufbau des systems: zirkonium-silizium. *Monatsh. Chem.* 1953, *84*, 677–685.
- 33. Gokhale, A. B; Abbeschian, G. J. The Hf–Si (hafnium-silicon) system. *Bull. Alloy Phase Diagrams*, 1989, *10*, *4*, 390–393.
- Karpinskii, O. G; Evseyev, B. A. X-ray investigation of the Hf–Si system from 37 to 65 at.% Si. *Russ. Metall. (Engl. Transl.).* 1969, *3*, 128–130.
- Nowotny, H. A; Laube, E.; Kieffer, T.; Benesovsky, F. Contribution to the structure of refractory hafnium phases: HfC–UC, Hf₂Si, HfSi, and Hf₅Si₃(C.) *Monatsh. Chem.* 1958, *89*, 701–707.

- Brukl, E. Ternary phase equilibria in transition metal-B-C-S systems. Part I. Binary systems. The Zr-Si and Hf-Si systems. *Tech. Rep. AFML-TR-65-2, Air Force Materials Lab., WPAFB, OH.* 1968.
- Bewlay, B. P.; Sutliff, J. A.; Bishop, R. R. Evidence for the existence of Hf₅Si₃.
 Phase Equilib. 1999, 20, 2, 109–112.
- Schubert, K.; Raman, A.; Rossteutscher, W. Einige Strukturdaten metallischer Phasen (10). *Naturwissenschaften* 1964, *51*, 506–507.
- 39. Boyko, M. O.; Muts, N. M.; Muts, I. R.; Gladyshevskii, R. E. Structure refinements of the compounds Pr₅Si₃ and Zr₃Si₂. *Chem. Met. Alloys* 2014, *7*, 56–62.
- 40. Pfeifer, H. U.; Schubert, K. Kristallstruktur von Zr₅Si₄. *Z. Metallkd*. 1966, *57*, 884–888.
- 41. Karpinskii, O. G.; Evseev, B. A. Crystal structure of the compound ZrSi. *Inorg. Mater.* 1965, *1*, 312–314.
- 42. Karpinskii, O. G.; Shamrai, V. F. The crystal structure of the compound ZrSi (type CrB). *Izv. Akad. Nauk SSSR, Met.* 1969, *4*, 209–210.
- Naray Szabo, S.V. Die struktur des zirkoniumsilicids ZrSi₂. Z. Kristallogr. 1937, 97, 223–228.
- Havinga, E. E.; Philips, N. V.; Damsma, H.; Hokkeling, P. Compounds and pseudobinary alloys with the CuAl₂(C16)-type structure. I. Preparation and X-ray results. *Less-Common Met.* 1972, *27*, 169–186.
- 45. Carlson, O. N.; Armstrong, P. E.; Wilhelm, H. A. Zirconium-germanium alloy system. *Trans. Am. Soc. Met.* 1956, *48*, 843–854.
- Rossteutscher W.; Schubert, K. Strukturuntersuchungen in einigen T^{4...5}–B^{4...5}– systemen. Z. Metallkd. 1965, 56, 813–822.
- Parthé, E. The crystal structure of YSi and Hf₅Ge₃(C). *Acta. Crystallogr.* 1959, *12*, 559–560.
- 48. Nowotny, H.; Benesovsky, F.; Schob, O. A Contribution to the system hafniumgermanium. *Monatsch. Chem.* 1960, *91*, 270–275.

- 49. Gokhale, A. B.; Abbaschian, R. The Ge–Hf (germanium–hafnium) system. Bull. Alloy Phase Diagrams. 1990, 11, 3, 253–256.
- 50. Nowotny, H; Braun, H.; Benesovsky, F. On the binary systems with hafnium. *Radex Rundsch.* 1960, *6*, 367–372.
- 51. Schubert, K.; Meissner, H. G.; Raman, A.; Rossteutscher, W. Einige strukturdaten metallischer phasen (9). *Naturwissenschaften* 1964, *51*, 287.
- 52. Kotur, B. Y; The Sc-Hf-Ge phase diagram for 1070 K. Metall. 1991, 3, 211-214.
- 53. Seropegin, Y. D.; Rudometkina, M. V. Physicochemical study of hafniumvanadium-germanium alloys. *Chem. Bull.* 1999, *54*, *1*, 32–41.
- Jerlerud Perez, R.; Toffolon Masclet, C.; Joubert, J. M.; Sundman, B. The Zr–Sn binary system: New experimental results and thermodynamic assessment. *CALPHAD* 2008, *32*, 593–601.
- 55. Okamoto, H. The Hf-Sn (hafnium-tin) system. J. Phase Equilib. 1991, 12, 4, 472-474.
- Balinska, A.; Kordan, V.; Misztal, R.; Pavlyuk, V. Electrochemical and thermal insertion of lithium and magnesium into Zr₅Sn₃. *J. Solid State Electrochem*. 2015, 19, 2481–2499.
- 57. Kwon, Y. U.; Corbett, J. D. The zirconium–tin system, with particular attention to the Zr₅Sn₃-Zr₅Sn₄ region and Zr₄Sn. *Chem. Mater.* 1990, *2*, 27–33.
- Nowotny, H.; Schachner, H. Rontgenographische untersuchungen in den systemen: zirkonium–zinn und zirkonium–blei. *Monatsh. Chem.* 1953, *84*, 169–180.
- Romaka, L. P; Stadnyk, Yu. V.; Bodak, O. I. Ternary Hf–Co–Sn system. J. Alloys Compd. 2001, 317/318, 347–349.
- 60. Rieger, W.; Nowotny, H.; Benesovsky, F. Phasen mit oktaedrischen bauelementen des ubergangsmetalls. *Monatsh. Chem.* 1965, *96*, 232–241.
- 61. Schob, O.; Parthé, E. The structure of HfSn. Acta Crystallogr. 1964, 17, 452–453.
- 62. Schubert, K.; Meissner, H. G.; Pötzschke, M.; Rossteutscher, W.; Stolz, E. Einige strukturdaten metallischer phasen (7). *Naturwissenschaften*. 1962, *49*, 57.

- 63. Garcia E.; Corbett, J. D. A synthetic and structural study of the zirconium–antimony system. *J. Solid State Chem.* 1988, 73, 440–451.
- 64. Morozkin, A. V.; Sviridov, I. A.; Leonov, A. V. Phase equilibria in the Dy–Zr–Sb system at 1070 K. *J. Alloys Compd.* 2002, *335*, 139–141.
- Tkachuk, A. V.; Mar, A. Zr₇Sb₄: A New Binary Zirconium-Rich Antimonide. *Inorg. Chem.* 2004, 43, 4400–4405.
- 66. Boller, H.; Parthe, E. Die bildung von *D*8₈-phasen zwischen 4*a*-metallen und Al, Ga, In und Sb. *Monatsh. Chem.* 1963, *94*, 225–226.
- Garcia, E.; Corbett, J. D. Chemistry of polar intermetallic compounds. Study of two Zr₅Sb₃ phases, hosts for a diverse interstitial chemistry. *Inorg. Chem.* 1988, *27*, 2353–2359.
- Kozlov, A. Y.; Pavlyuk, V. V. Solid solutions based on the M₅X₃ binary compounds in the M–(Si,Ge)–Sb ternary systems (M = Ti, Zr, Y; X= Si, Ge, Sb). Pr. Nauk. -Wyzsza Szk. Pedagog. Czestochowa, Chem. Ochr. Srodowiska 2003, 8, 23–28.
- Garcia, E.; Corbett, J. D. Study of the crystal structures of ZrSb and β-ZrSb₂ and of the bonding in the two ZrSb₂ structures. *J. Solid State Chem.* 1988, *73*, 452–467.
- Elder, I.; Lee, C. S.; Kleinke, H. Zr₁₁Sb₁₈: A new binary antimonide exhibiting an unusual Sb atom network with nonclassical Sb-Sb bonding. *Inorg. Chem.* 2002, *41*, 538–545.
- 71. Eberle, D.; Schubert, K. Strukturuntersuchungen im system zirkonium-wismut und einigen quasihomologen legierungen. *Z. Metallkd.* 1968, *59*, 306–308.
- Willerström, J. O.; Rundqvist, S. Coordination and bonding in Fe₃P–Ti₃P–V₃S– Ta₃As-type compounds: the crystal structures of Hf₃Sb and *h*-Ta₃Ge. *J. Solid State Chem.* 1981, *39*, 128–132.
- Kleinke, H.; Felser, C. New binary antimonide Hf₅Sb₃. Differences and similarities to the Zr antimonides. *J. Alloys Compd.* 1999, *291*, 73–79.
- 74. Haase, M. G.; Block, H.; Jeitschko, W. Preparation and crystal structures of some binary pnictides of scandium, zirconium, and hafnium: Sc₅Bi₃, ZrBi, α-HfBi, HfBi₂,

and the compounds $Zr_5Bi_3X_{1-x}$, possibly stabilized by an impurity (*X*). *Z. Anorg. Allg. Chem.* 2001, *627*, 1941–1948.

- 75. Schubert, K.; Meissner, H. G.; Rossteutscher, W. Einige strukturdaten metallischer phasen (11). *Naturwissenschaften*. 1964, *51*, 507.
- 76. Assoud, A.; Kleinke, K. M.; Soheilnia, N.; Kleinke, H. *T*-shaped nets of antimony atoms in the binary antimonide Hf₅Sb₉. *Angew. Chem. Int. Ed.* 2004, *43*, 5260–5262.
- Schubert K.; Frank, K.; Gohle, R.; Maldonado, A.; Meissner, H. G.; Raman, A.;
 Rossteutscher, W. Einige strukturdaten metallischer phasen (8).
 Naturwissenschaften. 1963, 50, 41.
- Kane, R. H.; Giessen, B. C.; Grant, N. J. New metastable phases in binary tin alloy systems. *Acta Metall.* 1966, *14*, 605–609.
- Vincent, R.; Exelby, D. R. Structure determination of a rhombohedral Al–Ge phase by CBED and X-ray powder diffraction. *Acta Crystallogr. A* 1995 *51*, 801–809.
- Vincent, R.; Exelby, D. R. Structure of a metastable Al–Ge phase determined from large angle CBED patterns. *Philos. Mag. B* 1993, 68, 513–528.
- Viennois, R.; Esmilaire, R.; Perriere, L.; Haidoux, A.; Alleno, E.; Beaudhuin, M. Crystal structure, stability, and physical properties of metastable electron-poor narrow-gap AlGe semiconductor. *Inorg. Chem.* 2017, *56*, 11591–11602.
- Hirano, H.; Uehara, S.; Mori, A.; Onodera, A.; Takemura, K.; Shimomura, O.; Akahama, Y.; Kawamura, H. High-pressure phase transitions in AlSb. *J. Phys. Chem. Solids* 2001, *62*, 941–949.
- Baublitz, M. Jr.; Ruoff, A. L. X-ray diffraction data from the high pressure phase of AlSb. J. Appl. Phys. 1983, 54, 2109–2110.
- 84. Goldschmidt, V. M. Untersuchungen uber bau und eigenschaften von krystallen. *Skr. Nor. Vidensk.-Akad., Kl. 1: Mat.-Naturvidensk. Kl.* 1926, *8*, 1–156.

- Perrot, P. Aluminium-silicon-titanium. Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Petzow, G.; Effenberg, G. Eds. VCH Publishers: Weinheim, 1993, 8, 283–290.
- Liu, S.; Weitzer, F.; Schuster, J. C.; Krendelsberger, N.; Du, Y. On the reaction scheme and liquidus surface in the ternery system Al–Si–Ti. *Int. J. Mater. Res.* 2008, 99, 705-711.
- Guan, Z. Q.; Pfullmann, Th.; Oehring, M.; Bormann, R. Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends. *J. Alloys Compd.* 1997, 252, 245–251.
- Harmelin, M.; Girgis, K.; Prince, A. Aluminium-silicon-zirconium. Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Eds. G. Petzow, G. Effenberg. – VCH Publishers: Weinheim, 1993, 8, 354–358.
- Schob, O.; Nowotny, H.; Benesovsky, F. Strukturbestimmung an einigen phasen in den systemen Zr–Al–Si und Hf–Al–Si. *Monatsh. Chem.* 1961, *92*, 1218–1226.
- Raman, A.; Schubert, K. Über den Aufbau einiger zu TiAl₃ verwandter Legierungsreihen. II. Untersuchungen in einigen *T*–Al–Si- und *T*^{4...6}–In–systemen. *Z. Metallkd.* 1965, *56*, 44–52.
- Bittner, W.; Gürth, M.; Duarte, I.; Leinenbach, C.; Effenberger, S.; Richter, W. Al–Ge–Ti: Phase equilibria and structural characterization of new ternary compounds. *Intermetallics*. 2014, 53, 157–168.
- Zhao, J. T.; Parthé, E. Aluminium substitution on specific germanium sites in HfGe₂ with ZrSi₂ type. *J. Less-Common Met.* 1990, *162*, L39–L43.
- 93. Pietzka, M. A.; Schuster, J. C. Phase equilibria of the quaternary system Ti-Al-Sn-N at 900°C. J. Alloys Compd. 1997, 247, 198–201.
- Pietzka, M. A.; Schuster, J. C. New ternary aluminides T₅M₂Al having W₅Si₃-type structure. J. Alloys Compd. 1995, 230, L10–L12.

- 95. Kwon, K.; Corbett, J. D. Chemistry in polar intermetallic compounds. The interstitial chemistry of zirconium-tin (Zr₅Sn₃). *Chem. Mater.* 1992, *4*, *6*, 1348–1355.
- Kimura, T.; Doi, H.; Hashimoto, K.; Abe, E.; Isoda, Y. Phase equilibria in the TiAlrich portion of Ti–Al–Sb system at 1373 and 1573 K. *J. Jpn. Inst. Metals.* 1997, *61*, *5*, 385–390.
- 97. Garcia, E.; Corbett, J. D. Chemistry in the polar intermetallic host Zr₅Sb₃. Fifteen interstitial compounds. *Inorg. Chem.* 1990, *29*, 3274–3282.
- 98. Козлов, А. Ю. Системи стибію з Зд-металами (Ті, Zr, Y) та силіцієм і германієм та деякі споріднені. Автореф. дис. ... канд. хім. наук, Львів. унів., Львів, 2004. 20 с.
- 99. Huang, W. H.; Chung, M. Y.; Lee, C. S. Syntheses, crystal structures, resistivities and electronic structures of Hf₅Al_{3-x}Sb_x (x = 0.70, 1.44, 2.14). *J. Chin. Chem. Soc. (Taipei)* 2013, *60*, 942–948.
- 100. Schob, O.; Nowotny, H.; Benesovsky, F. Die dreistoffe (titan, tirkonium, hafnium)– aluminium–silizium. *Planseeber. Pulvermetall.* 1962, *10*, 65–71.
- 101. Boller, H; Parthé, E. On the possibility of forming "pseudosilicides". *Acta Crystallogr.* 1963, *16*, 830–833.
- 102. Заводяний, В. В. Кристалічна структура сплавів і характер взаємодії металів в системах {Ti,La,Ho}-Al-Ga, {Ti,Zr}-Si-Ga. : Автореф. дис. ... канд. фіз.-мат. наук, Київ, 1997, 20 с.
- 103. Antonova, N. V.; Tretyachenko, L. A.; Galadzhy, O. Ph.; Velikanova, T. Ya. Isothermal section of the Ti–Si–Ga system in the Ti-rich corner at 1350°C. J. Alloys Compd. 1998, 267, 167–170.
- 104. Antonova, N. V.; Ban'kovsky, O. I.; Firstov, S. A.; Kulak, L. D.; Tretyachenko, L. A.; Velikanova, T. Ya. Structure and mechanical properties of the Ti–Si–Ga alloys in the Ti-rich corner. *J. Mater. Sci.* 1999, *34*, 3413–3416.

- 105. Tretyachenko, L. A.; Antonova, N. V.; Martsenyuk, P. S.; Velikanova, T. Ya. Phase equilibria in the Ti-rich corner of the Ti–Si–Ga system. *J. Phase Equilib.* 1999, 20, 6, 581–592.
- 106.Заводяний, В. В.; Марків, В. Я.; Бєлявіна, Н. М.; Макара, В. А. Фазові рівноваги в системі Zr–Si–Ga при 800°С. Доп. НАН України. 1997, 3, 122–126.
- 107. Tokaychuk, I.; Tokaychuk, Ya. O.; Gladyshevskii, R. E. The ternary system Hf-Ga-Si at 600 °C. *Chem. Met. Alloys* 2012, *5*, 84–89.
- 108. Возняк, І.; Токайчук, Я.; Глухий, В.; Фесслер, Т.; Гладишевський, Р. Тернарна сполука зі структурою типу CrB у системі Hf–Ga–Si. *Вісник Львів. ун-ту. Серія хім.* 2011, *52*, 78–83.
- 109. Raman, A.; Schubert, K. Über den aufbau einiger zu TiAl₃ verwandter legierungsreihen. I. Untersuchungen in einigen T⁴–Zn–Al-, T⁴–Zn–Ga- und T⁴–Ga–Ge-systemen. Z. Metallkd. 1965, 56, 40–43.
- 110. Токайчук, І. В. Системи Нf-Ga-{Si,Ge,Sn,Sb}: фазові рівноваги та кристалічні структури сполук. Автореф. дис.... канд. хім. наук, Львів. унів., Львів, 2012. 20 с.
- 111. Возняк, І.; Токайчук, Я.; Демченко, П.; Гладишевський, Р. Системи Hf₅Ga₃-Hf₅M₃ (M = Ge, Sn, Sb) при 600°С. Зб. наук. праць XIII Наукова конференція "Львівські хімічні читання – 2011", Львів, Україна, 28 травня – 1 червня 2011; с. H12.
- 112. Voznyak, I. V.; Tokaychuk, Y. O.; Gladyshevskii, R. E. W₅Si₃-type compounds in the (Zr,Hf)-Ga-Sn systems. Coll. Abstr. 11th International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, 2010, p. 135.
- 113. Voznyak, I.; Tokaychuk, Ya.; Gladyshevskii, R. The system Hf–Ga–Sn at 600°C and the crystal structure of Hf₅Ga_{1.24-0.52}Sn_{1.76-2.48}. *Chem. Met. Alloys.* 2011, *4* (3/4), 175–187.
- 114. Voznyak, I. V.; Tokaychuk, Ya.; Hlukhyy, V.; Fässler, T. F.; Gladyshevskii, R. Interstitial solid solution Hf₅Ga_xSn₃ (x = 0-1). *J. Alloys Compd.* 2012, *512*, 246–251.

- 115. Tokaychuk, I.; Tokaychuk, Y. O.; Gladyshevskii, R. E. The ternary system Hf–Ga–Sb at 600 °C. *Chem. Met. Alloys* 2013, *6*, 75–80.
- 116. Voznyak, I. V.; Tokaychuk, Y. O.; Hlukhyy, V. H.; Fassler, T. F.; Gladyshevskii, R. E. Hf₃Ga_{1.97(2)}Sn_{1.03(2)}, a ternary derivative of the ThIn type. *Chem. Met. Alloys* 2011, *4*, 166–174.
- 117. Tokaychuk, I. V.; Tokaychuk, Ya. O.; Gladyshevskii, R. E. Crystal structure of Hf₂GaSb₃. *Solid State Phenomena* 2012, *194*, 1–4.
- 118. Brukl, C. E.; Nowotny, H.; Benesovsky, F. Untersuchungen in den dreistoffsystemen: V–Al–Si, Nb–Al–Si, Cr–Al–Si, Mo–Al–Si bzw. Cr(Mo)–Al–Si. *Monatsh. Chem.* 1961, 92, 967–980.
- Nowotny, H.; Benesovsky, F.; Brukl, C. E. Der dreistoff: niob–aluminium–silicium. Monatsh. Chem. 1961, 92, 193–196.
- 120. Nowotny, H.; Brukl, C. E.; Benesovsky, F. Untersuchungen in den systemen tantal–aluminium–silicium und wolfram–aluminium–silicium. *Monatsh. Chem.* 1961, 92, 116–127.
- 121. Otto, G. Zur Supraleitung einiger mischsysteme von verbindungen mit *A*15-strucktur auf niobbasis. *Z. Phys.* 1968, *215*, 323–334.
- 122. Bachner, F. J.; Goodenough, J. B.; Gatos, H. C. Superconducting transition temperature and electronic structure in the pseudobinaries Nb₃Al–Nb₃Sn and Nb₃Sn-Nb₃Sb. *J. Phys. Chem. Solids* 1967, *28*, 889–895.
- 123. Muller, P. Supraleitung in quasibinaren legierungsreihen vom typ A₃B–Nb₃Si mit A15-struktur. Z. Metallkd. 1977, 68, 421–427.
- 124. http://matersciimc.lnu.edu.ua/equipment/x-ray-fluorescent-spectrometer/
- 125. Gladyshevskii, R. E. *Methods to Determine Crystal Structures*. *Textbook*, Publishing Centre of Ivan Franko National University of Lviv: Lviv, 2015; 135 p.
- 126. STOE *WinXPow* (Version 2.21). STOE & CIE GmbH: Darmstadt, 2005.
- Akselrud, L.; Grin, Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014, 47.

- 128. Pecharsky, V. K.; Zavalij, P. Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition, Springer New York, 2008, 744 p.
- 129. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. *J. Appl. Crystallogr.* 1969, *2*, 65–71.
- 130. Rodriguez-Carvajal, J. Recent developments of the program *FULLPROF*. *Commission on Powder Diffraction (IUCr), Newsletter*. 2001, *26*, 12–19.
- 131. International Tables for Crystallography. Vol. C. Ed. T. Hahn, Dordrecht (The Netherlands): Kluwer, 2002.
- 132. Gelato, L. M.; Parthé, E. STRUCTURE TIDY a computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143.
- 133. International Tables for Crystallography. Vol. A. Ed. T. Hahn, Dordrecht (The Netherlands): Kluwer, 2002.
- 134. Крип'якевич, П. І. Структурні типи інтерметалічних сполук. *Наука*, 1977, 290 с.
- 135. Parthé, E.; Gelato, L.; Chabot, B.; Penzo, M.; Cenzual, K.; Gladyshevskii, R. *TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types*, Springer-Verlag, Berlin, 1993.
- 136. Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. The ternary system Zr–Al–Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds. *Chem. Met. Alloys* 2022, *15 (1/2)*, 1–7.
- 137 Maryskevych, D.; Tokaychuk, Y.; Gladyshevskii, R. Structural evolution in the systems TAl_{3-x}Ge_x (T= Zr, Hf). Solid State Phenom. 2019, 289, 71–76.
- 138. Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Structural evolution in the systems $TAl_{3-x}Ge_x$ (T = Zr, Hf). Progr. Abstr. 21 International Conference on Solid Compounds of Transition Elements, Vienna, Austria, March 25–29, 2018; p. 24.
- 139. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Кристалічна структура сполуки HfAl_{2,7}Ge_{0,3}. Зб. тез. допов. І Міжнародної (XI Української)

наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", м. Вінниця, Україна, 27–29 березня, 2018; с. 103.

- 140. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні алюмогерманіди ZrAl_{2,5}Ge_{0,5} і HfAl_{2,4}Ge_{0,6}. Тези допов. Х Всеукраїнської наукової конференції студентів та аспірантів "Хімічні Каразінські читання 2018", м. Харків, Україна, 23–25 квітня, 2018; с. 35–36.
- 141. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні сполуки системи Zr–Al–Sn (600°С). Матер. VI Всеукраїнської наукової конференції "Актуальні задачі хімії: дослідження та перспективи", м. Житомир, Україна, 5 жовтня, 2022; с. 87–88.
- 142. Maryskevych, D.; Tokaychuk, Ya.; Akselrud, L.; Gladyshevskii, R. The structure type ZrAl_{0.23}Ge_{1.77}. *Phys. Chem. Solid State* 2023, *24 (3)*, 448–452.
- 143. Марискевич, Д.; Токайчук, Я.; Аксельруд, Л.; Гладишевський, Р. Кристалічна структура сполуки ZrAl_{0,23}Ge_{1,77}. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання 2021", Львів, Україна, 31 травня 2 червня, 2021; с. НЗО.
- 144. Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Crystal structure of the ternary compounds HfAl_{2.67}Sb_{0.33} and Hf₂AlSb₃. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 91.
- 145. Kobluyk, N. A.; Melnyk, G. A.; Romaka, L. P.; Bodak, O. I.; Fruchart, D. Crystal structure of Zr₂CuSb₃ and related compounds. *J. Alloys Compd.* 2001, *317/318*, 284–286.
- 146. Smith, G. S.; Johnson, Q. C.; Tharp, A. G. The Crystal Structure of Ho₁₁Ge₁₀. Acta Crystallogr. 1967, 23, 640–644.
- 147. Maryskevych, D.; Tokaychuk; Ya., Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of Zr₅AlGe₃. *Chem. Met. Alloys* 2019, *12 (1/2)*, 39–43.

- 148. Maryskevych, D.; Tokaychuk, Ya.; Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of the compound Zr₅AlGe₃. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 106.
- 149. Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,70}Ge_{0,30}. Вісник Львів. ун-ту. Серія хім. 2020, 61, 63–70.
- 150. Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,7}Ge_{0,3}. Зб. наук. праць XVII Наукової конференції "Львівські хімічні читання – 2019", м. Львів, Україна, 2–5 червня, 2019; с. НЗ9.
- 151. Maryskevych, D. T.; Tokaychuk, Ya. O.; Gladyshevskii, R. E. Crystal structure of the new ternary compound Zr₅Al_{0.41}Sn_{2.59}. Зб. тез. допов. V Міжнародної (XV Української) наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", Вінниця, Україна, 22–24 березня, 2022; с. 51.
- 152. Zhao, J. T.; Parthé, E. Sc₁₁Al₂Ge₈, a ternary substitution variant of the tetragonal Ho₁₁Ge₁₀ type. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 1991, 47, 4–6.
- 153. Tokaychuk Ya. The ternary system Sm–Ga–Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds. *Chem. Met. Alloys* 2015, 8, 112–122.
- 154. Тиванчук, Ю. Б.; Міліянчук, Х. Ю.; Заремба, В. І.; Степень-Дамм, Ю.; Каличак, Я. М. Взаємодія компонентів в системах Sm-{Si, Ge}-In при 870 К. Укр. хім. журн. 2001, 67, 11, 15–18.
- 155. Kotur, B. Ya.; Bodak, O. I.; Zavodnik, V. E.; Kotur, B. Ya. The silicide $Sc_7Cr_{4+x}Si_{10-x}$ (x = 0.8): the first representative of a superlattice structure of the Ho₁₁Ge₁₀ type. *Crystallogr.* 1985, *30*, 521–523.

ДОДАТОК

Список публікацій та відомості про апробацію основних результатів дослідження здобувача за темою дисертаційної роботи

Наукові праці, в яких опубліковані основні наукові результати дисертації:

 Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Structural evolution in the systems TAl_{3-x}Ge_x (T = Zr, Hf). Solid State Phenom. 2019, 289, 71–76. https://doi.org/10.4028/www.scientific.net/SSP.289.71

Особистий внесок здобувача: аналіз літературних відомостей, синтез зразків, одержання масивів рентгенівських дифракційних даних, виготовлення шліфів, здійснення фазового аналізу і підготовка статті до друку.

 Maryskevych, D.; Tokaychuk; Ya., Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of Zr₅AlGe₃. *Chem. Met. Alloys* 2019, *12* (1/2), 39–43. https://doi.org/10.30970/cma12.0393

Особистий внесок здобувача: аналіз літературних відомостей, синтез зразка, пошук монокристала, уточнення кристалічної структури сполуки і підготовка статті до друку.

 Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,70}Ge_{0,30}. Вісник Львів. ун-ту. Серія хім. 2020, 61, 63–70. https://doi.org/10.30970/vch.6101.063

Особистий внесок здобувача: аналіз літературних відомостей, синтез зразків, одержання масивів рентгенівських дифракційних даних, виготовлення шліфів, здійснення фазового аналізу, уточнення кристалічної структури сполуки і підготовка статті до друку.

 Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. The ternary system Zr–Al–Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds. *Chem. Met. Alloys* 2022, *15* (1/2), 1–7. https://doi.org/10.30970/cma15.0421 Особистий внесок здобувача: аналіз літературних відомостей, синтез зразків, одержання масивів рентгенівських дифракційних даних, виготовлення шліфів, здійснення фазового аналізу, побудова ізотермічного перерізу діаграми стану, уточнення кристалічної структури сполук і підготовка статті до друку.

 Maryskevych, D.; Tokaychuk, Ya.; Akselrud, L.; Gladyshevskii, R. The structure type ZrAl_{0.23}Ge_{1.77}. *Phys. Chem. Solid State* 2023, *24* (3), 448–452. https://doi.org/10.15330/pcss.24.3.448-452

Особистий внесок здобувача: аналіз літературних відомостей, синтез зразка, пошук монокристала, уточнення кристалічної структури сполуки і підготовка статті до друку.

Апробація основних результатів дослідження на конференціях, симпозіумах, семінарах тощо:

- 1. **Maryskevych, D.**; Tokaychuk, Ya.; Gladyshevskii, R. Structural evolution in the systems $TAl_{3-x}Ge_x$ (T = Zr, Hf). Progr. Abstr. 21 International Conference on Solid Compounds of Transition Elements, Vienna, Austria, March 25–29, 2018; p. 24 *(очна участь, стендова доповідь)*.
- Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Кристалічна структура сполуки HfAl_{2,7}Ge_{0,3}. Зб. тез. допов. І Міжнародної (ХІ Української) наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", м. Вінниця, Україна, 27–29 березня, 2018; с. 103 (заочна участь).
- Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні алюмогерманіди ZrAl_{2,5}Ge_{0,5} і HfAl_{2,4}Ge_{0,6}. Тези допов. Х Всеукраїнської наукової конференції студентів та аспірантів "Хімічні Каразінські читання – 2018", м. Харків, Україна, 23–25 квітня, 2018; с. 35–36 (заочна участь).

- Марискевич, Д.; Токайчук, Я.; Гладишевський, Р. Кристалічна структура алюмогерманіду Zr₅Al_{2,7}Ge_{0,3}. Зб. наук. праць XVII Наукової конференції "Львівські хімічні читання – 2019", м. Львів, Україна, 2–5 червня, 2019; с. НЗ9 *(очна участь)*.
- Maryskevych, D.; Tokaychuk, Ya.; Prots, Yu.; Akselrud, L.; Gladyshevskii, R. Crystal structure of the compound Zr₅AlGe₃. Coll. Abstr. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 22–26, 2019; p. 106 (очна участь, стендова доповідь).
- Марискевич, Д.; Токайчук, Я.; Аксельруд, Л.; Гладишевський, Р. Кристалічна структура сполуки ZrAl_{0,23}Ge_{1,77}. Зб. наук. праць XVIII Наукової конференції "Львівські хімічні читання – 2021", м. Львів, Україна, 31 травня – 2 червня, 2021; с. НЗО (очна участь, стендова доповідь).
- Maryskevych, D. T.; Tokaychuk, Ya. O.; Gladyshevskii, R. E. Crystal structure of the new ternary compound Zr₅Al_{0.41}Sn_{2.59}. Зб. тез. допов. V Міжнародної (XV Української) наукової конференції студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення", Вінниця, Україна, 22–24 березня, 2022; с. 51 (дистанційна участь, стендова доповідь).
- Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Тернарні сполуки системи Zr–Al–Sn (600°С). Матер. VI Всеукраїнської наукової конференції "Актуальні задачі хімії: дослідження та перспективи", м. Житомир, Україна, 5 жовтня, 2022; с. 87–88 (дистанційна участь, стендова доповідь).
- Maryskevych, D.; Tokaychuk, Ya.; Gladyshevskii, R. Crystal structure of the ternary compounds HfAl_{2.67}Sb_{0.33} and Hf₂AlSb₃. Coll. Abstr. XV International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25–27, 2023; p. 91 (дистанційна участь, стендова доповідь).
- 10. **Марискевич,** Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Кристалічна структура тернарних сполук системи Zr–Al–Ge. Звітна наукова конференція співробітників Університету за 2019 рік (*очна участь, усна доповідь*).
- 11. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Фазові рівноваги та кристалічна структура тернарних сполук у системі Zr–Al–Ge за 600°С.

Звітна наукова конференція співробітників Університету за 2020 рік (дистанційна участь, усна доповідь).

- Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Система Zr–Al–Sn за 600°С. Звітна наукова конференція співробітників Університету за 2021 рік (*дистанційна участь, усна доповідь*).
- 13. Марискевич, Д. Т.; Токайчук, Я. О.; Гладишевський, Р. Є. Система Hf–Al–Sb при 600°С. Звітна наукова конференція співробітників Університету за 2022 рік (очна участь, усна доповідь на пленарному засіданні).